Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
a) Tứ giác AEFD là hình thoi, tứ giác AECF là hình bình hành (tự chứng minh).
b) Tứ giác AECF là hình bình hành nên EN // FM. Tứ giác AECF là hình bình hành nên EM // FN. AEFD là hình thoi nên AF \(\perp\) DE.
Hình bình hành EMFN có \(\widehat{M}=90^o\) nên là hình chữ nhật.
c) Hình chữ nhật EMFN là hình vuông
\(\Leftrightarrow\) ME = MF \(\Leftrightarrow\) DE = AF (vì DE = 2ME, AF = 2MF)
\(\Leftrightarrow\) Hình thoi AEFD có hai đường chéo bằng nhau
\(\Leftrightarrow\) AEFD là hình vuông \(\Leftrightarrow\) \(\widehat{A}=90^o\).
\(\Leftrightarrow\) Hình bình hành ABCD là hình chữ nhật.
Như vậy, hình chữ nhật EMFN là hình vuông nếu ABCD là hình chữ nhật.
a: Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFD là hình bình hành
mà AE=AD
nên AEFD là hình thoi
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét tứ giác BEFC có
BE//FC
BE=FC
Do đó: BEFC là hình bình hành
mà BE=BC
nên BEFC là hình thoi
=>EC\(\perp\)BF tại N
Ta có: AEFD là hình thoi
nên AF\(\perp\)ED tại M
Xét ΔEDC có
EF là đường trung tuyến
EF=DC/2
Do đó:ΔEDC vuông tại E
Xét tứ giác EMFN có
\(\widehat{EMF}=\widehat{ENF}=\widehat{NEM}=90^0\)
Do đó: EMFN là hình chữ nhật
c: Để EMFN là hình vuông thì ME=MF
=>AF=DE
Hình thoi AEFD có AF=DE
nên AEFD là hình vuông
=>\(\widehat{BAD}=90^0\)
a: Xét tứ giác EBFD có
EB//FD
EB=FD
Do đó: EBFD là hình bình hành
Đề sai rồi bạn