K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

đầu bài chỗ " đường chéo BD cắt AE" chắc là " đường chéo BD cắt AI" phải không bn???

a) ta có: AB = CD ( ABCD là h.b.h)

=> AK = IC \(\left(=\frac{1}{2}AB=\frac{1}{2}CD\right)\)

mà AK // IC

=> AKCI là hình bình hành ( dấu hiệu)

xét \(\Delta DFC\)

có: DI =IC (gt)

EI // FC ( AKCI là h.b.h)

=> EI là đường trung bình của \(\Delta DFC\)

=> DE = EF ( t/c')

cmtt với \(\Delta AEB\)ta có: EF = FB

=> DE=EF=FB

b) xét \(\Delta ABD\)

có: AM=MD

AK=KB

=> KM là đường trung bình của \(\Delta ABD\)

=> KM // BD và \(KM=\frac{1}{2}BD\)

cmtt với \(\Delta BCD\)ta có: IN//BD và \(IN=\frac{1}{2}BD\)

=> KM // IN (//BD)

\(KM=IN\left(=\frac{1}{2}BD\right)\)

=> KMIN là hình bình hành ( dấu hiệu)

30 tháng 5 2017

A D C B E O F M N

a) Trong tứ giác DEBF có:

Hai đường chéo BD và EF cắt nhau tại trung điểm O

Các cạnh đối BE và DF bằng nhau

\(\Rightarrow\) Tứ giác DEBF là hình bình hành.

b) Gọi O là giao điểm hai đường chéo của hình bình hành ABCD, ta có O là trung điểm của BD.

Theo câu a), DEBF là hình bình hành nên trung điểm O của BD cũng là trung điểm của EF.

Vậy AC, BD, EF cùng cắt nhau tại điểm O.

c) \(\Delta ABD\) có các đường trung tuyến AO, DE cắt nhau ở M nên OM = \(\dfrac{1}{3}\) OA.

\(\Delta CBD\) có các đường trung tuyến CO, BF cắt nhau ở N nên ON = \(\dfrac{1}{3}\) OC.

Tứ giác EMFN có các đường chéo cắt nhau tại trung điểm của mỗi đường OM = ON, OE = OF nên là hình bình hành.

3 tháng 11 2018

Bạn kham khảo nha

Ôn tập : Tứ giác

9 tháng 3 2020

sollution

23 tháng 12 2016

Câu 1:

a)

\(BM=MC=\frac{1}{2}BC\) (M là trung điểm của BC)

\(AN=ND=\frac{1}{2}AD\) (N là trung điểm của AD)

\(BC=AD\) (ABCD là hình bình hành)

\(\Rightarrow AN=ND=BM=MC\) (1)

mà ND // BM

=> BMDN là hình bình hành

=> BN // MD (2)

=> MDKB là hình thang

b)

MC = AN (theo 1)

mà MC // AN (ABCD là hình bình hành)

=> AMCN là hình bình hành

=> AM // CN (3)

Từ (2) và (3)

=> MPNQ là hình bình hành (4)

BM = AN (theo 1)

mà BM // AN (ABCD là hình bình hành)

=> ABMN là hình bình hành

mà AB = BM \(\left(=\frac{1}{2}BC\right)\)

=> ABMN là hình thoi

=> AM _I_ BN

=> MPN = 900 (5)

Từ (4) và (5)

=> MPNQ là hình chữ nhật

c)

MPNQ là hình vuông

<=> MN là tia phân giác của PMQ

mà MN là đường trung tuyến của tam giác MDA vuông tại M (N là trung điểm của AD; MPNQ là hình chữ nhật)

=> Tam giác MDA vuông cân tại M có MN là đường trung tuyến

=> MN là đường cao của tam giác MDA

=> MNA = 900

mà MNA = ABM (ABMN là hình thoi)

=> ABM = 900

mà ABCD là hình bình hành

=> ABCD là hình chữ nhật

Câu 2:

a)

\(AE=EB=\frac{AB}{2}\) (E là trung điểm của của AB)

\(CF=FD=\frac{CD}{2}\) (F là trung điểm của của CD)

mà AB = CD (ABCD là hình bình hành)

=> AE = EB = CF = FD (1)

mà AE // CF (ABCD là hình bình hành)

=> AECF là hình bình hành

b)

AE = FD (theo 1)

mà AE // FD (ABCD là hình bình hành)

=> AEFD là hình bình hành

mà DA = AE \(\left(=\frac{1}{2}AB\right)\)

=> AEFD là hình thoi

=> AF _I_ ED

=> EMF = 900 (2)

EB = FD (theo 1)

mà EB // FD (ABCD là hình bình hành)

=> EBFD là hình bình hành

=> EM // NF

mà EN // MF (AECF là hình bình hành)

=> EMFN là hình bình hành

mà EMF = 900 (theo 2)

=> EMFN là hình chữ nhật

c)

EMFN là hình vuông

<=> EF là tia phân giác của MEN

mà EF là đường trung tuyến của tam giác ECD vuông tại E (F là trung điểm của CD; EMFN là hình chữ nhật)

=> Tam giác ECD vuông cân tại E có EF là đường trung tuyến

=> EF là đường cao của tam giác ECD

=> EFD = 900

mà EFD = DAE (AEFD là hình thoi)

=> DAE = 900

mà ABCD là hình bình hành

=> ABCD là hình chữ nhật

17 tháng 10 2015

a, Ta có:ABCD la hình bình hành=>AB=CD;AB//CD

mà E là trung diểm của AB;Flà trung điểm của CD

=>AE=EB=CF=DF(1)

VÌ AB//CD=>EB//DF(2)

Từ(1) và (2)=> EBFD là hình bình hành( theo dấu hiệu nhận biết hình bình hành)(đpcm)

b, Xét hbh ABCD có

AC cắt BD tại trung diểm củaAC và BD(1)

Xét hbh EBFD có EF cắt BD tại trung điểm của EF và BD(2)

từ (1) và (2)=>ba dường thang AC,BD,EF đồng quy

c,GỌI GIAO DIỂM CỦA AC,BD,EF LÀ O

Xét tam giác EOM và tam giác NOF có

góc EOM=góc NOF( đói đỉnh)

OE=OF(vi O là trung điểm cua EF)

goc MEF=góc NFE(vì CE//BF)

=>TAM GIAC EOM=TAMGIAC NOF

=.ME=NF(1)

TA CÓ ME//FN(2)

TU (1) VA(2)=>ENFM LA HBH