Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AECF là hình bình hành => EN // AM
E là trung điểm của AB => N là trung điểm của BM, do đó MN = NB.
Tương tự, M là trung điểm của DN, do đó DM = MN.
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: Xét ΔCDM có
F là trung điểm của CD
FN//DM
Do đó: N là trung điểm của CM
Suy ra: NM=NC(1)
Xét ΔANB có
E là trung điểm của AB
EM//NB
Do đó: M là trung điểm của AN
Suy ra: AM=MN(2)
từ (1) và (2) suy ra AM=MN=NC
( Bạn tự vẽ hình nha )
a) Xét tứ giác AEDF có :
DE // AB
DF // AC
=> AEDF là hình bình hành ( dấu hiệu nhận biết )
Xét hình bình hành AEDF có :
AD là phân giác của góc BAC
=> EFGD là hình thoi ( dấu hiệu nhận biết )
b) XÉt tứ giác EFGD có :
FG // ED ( AF //ED )
FG = ED ( AF = ED )
=> EFGD là hình bình hành ( dấu hiệu nhận biết )
c) Nối G với I
+) XÉt tứ giác AIGD có :
F là trung điểm của AG
F là trung điểm của ID
=> AIGD là hình bình hành ( dấu hiệu nhận biết )
=> GD // IA hay GD // AK ( tính chất )
+) Xét tứ giác AKDG có :
GD // AK
AG // Dk ( AF // ED )
=> AKDG là hình bình hành ( dấu hiệu )
+) xtes hinhnf bình hành AKDG có :
AD và GK là 2 đường chéo
=> AD và GK cắt nhau tại trung điểm mỗi đường
Mà O là trung điểm của AD ( vì AFDE là hình thoi )
=> O là trung điểm của GK
=> ĐPCM
a) Xét Tứ giác DEBF ta có:
EB // DF ( vì AB // CD )
EB = DF ( vì = \(\frac{1}{2}\) AB và DC ( AB =DC) ) [ nếu không đúng cách trình bày thì bạn có thể sửa lại câu từ cho hay]
\(\Rightarrow\)tứ giác DEBF là hbh
a/ Do ABCD là hình bình hành => AB=CD => 1/2AB=1/2CD => AE=EB=DF=CF
Do ABCD là hình bình hành => EB//FC=> EB/FC=BN/NF=EN/NC=1(*) (do EB=FC) (Hệ quả định lí Talet)
(*)=>BN=NF => N là trung điểm BF mà E là trung điểm AB => EN là đường trung bình trong tam giác ABF => EN//AF <=> EN//MF(1)
(*) => EN=NC => N là trung điểm EC mà F là trung điểm CD =>FN là đường trung bình trong tam giác ECD =>FN//ED <=> FN//ME(2)
Từ (1)(2) ta được: EMFN là hình bình hành (ĐPCM)
b/ Ta có: AE=FC (câu a) và AE//FC ( do ABCD là hình chữ nhật) => AECF là hình bình hành => AC đồng quy với EF tại trung điểm của EF (cũng là trung điểm của AC) (3). (Gọi điểm mà 2 đường chéo giao nhau là O)
Lại có: EMFN là hình bình hành
mà O là trung điểm của EF => MN đồng quy với EF tại O (O lúc này cũng là trung điểm của MN) (4)
=> AC,EF,MN đồng quy tại O
=> AC,EF,MN đồng quy tại 1 điểm (ĐPCM)
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: Xét ΔANB có
E là trung điểm của AB
EM//NB
Do đó: M là trung điểm của AN
=>AM=MN(1)
Xét ΔMCD có
F là trung điểm của CD
FN//DM
Do đó: N là trung điểm của CM
Suy ra: NC=NM(2)
Từ (1) và (2) suy ra AM=MN=NC