K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LD
6 tháng 10 2019
a,áp dụng định lí pytago ta có bc^2=ab^2+ac^2
bc^2=15^2+20^2
bc=25
a) Từ I hạ IH,IK lần lượt vuông góc với AB,AC. Theo tính chất điểm nằm trên phân giác của góc thì IH = IK.
Xét \(\Delta\)IHE và \(\Delta\)IKD: IH = IK, ^IHE = ^IKD = 900, IE = ID (gt) => \(\Delta\)IHE = \(\Delta\)IKD (Ch.cgv)
=> ^IEH = ^IDK hay ^IEA = ^IDC => Tứ giác ADIE nội tiếp
=> ^BAC = 1800 - ^DIE = 1800 - ^BIC = 1800 - (1800 - ^ABC/2 - ^ACB/2) = ^ABC/2 + ^ACB/2
= 900 - ^BAC/2 => 3.^BAC = 1800 => ^BAC = 600. Vậy góc BAC = 600.
b) Trên cạnh BC lấy điểm F sao cho IF là phân giác của ^BIC.
Theo câu a: ^BAC = 600, tứ giác ADIE nội tiếp => ^DIE = ^BIC = 1200 => ^BIF = ^CIF = 600
Mà ^BIE = ^CID = ^BAC = 600 nên ^BIE = ^BIF = ^CIF = ^CID
Dễ dàng chỉ ra \(\Delta\)BEI = \(\Delta\)BFI (g.c.g), \(\Delta\)CDI = \(\Delta\)CFI (g.c.g)
=> BE = BF,CD = CF. Do đó BE + CD = BC. Tức là \(\frac{BE}{BC}+\frac{CD}{BC}=1\)
Áp dụng ĐL đường phân giác trong tam giác: \(\frac{BE}{BC}=\frac{AE}{AC}\left(=\frac{IE}{IC}\right)=\frac{BE+AE}{BC+AC}=\frac{AB}{BC+AC}\)
Từ đó \(\frac{AB}{BC+CA}+\frac{AC}{AB+BC}=1\)=> \(\frac{AB+BC+CA}{AB+BC}+\frac{AB+BC+CA}{BC+CA}=3\)
Vậy thì \(\frac{1}{AB+BC}+\frac{1}{BC+CA}=\frac{3}{AB+BC+CA}\) (đpcm).