Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ I hạ IH,IK lần lượt vuông góc với AB,AC. Theo tính chất điểm nằm trên phân giác của góc thì IH = IK.
Xét \(\Delta\)IHE và \(\Delta\)IKD: IH = IK, ^IHE = ^IKD = 900, IE = ID (gt) => \(\Delta\)IHE = \(\Delta\)IKD (Ch.cgv)
=> ^IEH = ^IDK hay ^IEA = ^IDC => Tứ giác ADIE nội tiếp
=> ^BAC = 1800 - ^DIE = 1800 - ^BIC = 1800 - (1800 - ^ABC/2 - ^ACB/2) = ^ABC/2 + ^ACB/2
= 900 - ^BAC/2 => 3.^BAC = 1800 => ^BAC = 600. Vậy góc BAC = 600.
b) Trên cạnh BC lấy điểm F sao cho IF là phân giác của ^BIC.
Theo câu a: ^BAC = 600, tứ giác ADIE nội tiếp => ^DIE = ^BIC = 1200 => ^BIF = ^CIF = 600
Mà ^BIE = ^CID = ^BAC = 600 nên ^BIE = ^BIF = ^CIF = ^CID
Dễ dàng chỉ ra \(\Delta\)BEI = \(\Delta\)BFI (g.c.g), \(\Delta\)CDI = \(\Delta\)CFI (g.c.g)
=> BE = BF,CD = CF. Do đó BE + CD = BC. Tức là \(\frac{BE}{BC}+\frac{CD}{BC}=1\)
Áp dụng ĐL đường phân giác trong tam giác: \(\frac{BE}{BC}=\frac{AE}{AC}\left(=\frac{IE}{IC}\right)=\frac{BE+AE}{BC+AC}=\frac{AB}{BC+AC}\)
Từ đó \(\frac{AB}{BC+CA}+\frac{AC}{AB+BC}=1\)=> \(\frac{AB+BC+CA}{AB+BC}+\frac{AB+BC+CA}{BC+CA}=3\)
Vậy thì \(\frac{1}{AB+BC}+\frac{1}{BC+CA}=\frac{3}{AB+BC+CA}\) (đpcm).
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=AB^2\left(1\right)\)
Xét ΔBCD vuông tại B có BA là đường cao
nên \(AD\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)
1: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=5(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=2,4(cm)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
Trong tam giác ABC có : ABC + ACB + BAC = 180 => ABC + ACB = 120
mà BD , CE lần lượt là phân giác của ABC , ACB => 2IBC + 2ICB = 120 <=> IBC + ICB = 60
Có : DIE+DIC = 180 ( kề bù ) mà DIC = IBC + ICB = 60 ( góc ngoài của tam giác IBC )
=> DIE = 120 và DIE + BAC = 180 => AEID nội tiếp
Mysterious Person Akai Haruma Nguyễn Thanh Hằng Mashiro Shiina