K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

ta có góc BIC = 180 độ - góc IBC - góc ICB

   => góc BIC = 180 độ - 1/2 góc B - 1/2 góc C 

  => góc BIC = 180 độ - 1/2*(góc B+ góc C) 

 => góc bic =180 độ - 1/2*( 180 độ - góc A) 

  => gocs BIC =180 độ - 90 độ +1/2 góc A

  => góc BIC =90 độ +1/2 góc A( đpcm) 

trả lời:

^BIC=180o-^B/2-^C/2=180o-(180o-^BAC)/2=90o+1/2 ^BAC

Chúc bn học tốt

8 tháng 8 2021

^BIC=180o-^B/2-^C/2=180o-(180o-^BAC)/2=90o+1/2 ^BAC

~ HT ~

trả lời:

^BIC=180o-^B/2-^C/2=180o-(180o-^BAC)/2=90o+1/2 ^BAC

Chúc bn học tốt

8 tháng 7 2019

Tham khảo:Câu hỏi của Kaito1412_TV - Toán lớp 7 - Học toán với OnlineMath

22 tháng 11 2020

K là giao điêm của AI;BC

BIK=IBA+IAB

CIK=IBC+ICB

=> BIC=BIK+CIK=IBA+IAB+ICB+IBC

=90+BAC/2

22 tháng 10 2023

a: Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

=>\(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}\)

=>\(2\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\widehat{BAC}\)

=>\(\widehat{IBC}+\widehat{ICB}=90^0-\dfrac{1}{2}\cdot\widehat{BAC}\)

Xét ΔIBC có \(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)

=>\(\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)\)

\(=180^0-90^0+\dfrac{1}{2}\cdot\widehat{BAC}=90^0+\dfrac{1}{2}\cdot\widehat{BAC}\)

b: Xét ΔIMB và ΔEMC có

MI=ME

\(\widehat{IMB}=\widehat{EMC}\)

MB=MC

Do đó: ΔIMB=ΔEMC

c: IM=1/2IE

mà IM=1/2BI

nên IB=IE

Xét ΔBIE vuông tại I có IB=IE

nên ΔBIE vuông cân tại I

=>\(\widehat{IEB}=45^0\)

Xét tứ giác BICE có

M là trung điểm chung của BC và IE

nên BICE là hình bình hành

=>BE//CI

=>\(\widehat{BEI}=\widehat{EIC}\)(hai góc so le trong)

mà \(\widehat{BEI}=45^0\)

nên \(\widehat{EIC}=45^0\)

\(\widehat{BIC}=\widehat{BIE}+\widehat{EIC}\)

\(=90^0+45^0=135^0\)

\(\widehat{BIC}=90^0+\dfrac{1}{2}\cdot\widehat{BAC}\left(cmt\right)\)

=>\(\dfrac{1}{2}\cdot\widehat{BAC}=135^0-90^0=45^0\)

=>\(\widehat{BAC}=90^0\)

25 tháng 11 2018

a) I là giao điểm của 2 đường phân giác của tam giác ABC

=> I cũng là giao điểm của 3 đường phân giác của tam giác ABC 

hay áp dụng định lý của ba đường phân giác của tam giác thì I cách đều 3 cạnh

<=> ID = IE ( đpcm ).

b)\(\widebat{A}+\widebat{B}+\widebat{C}=180^o\)

\(\Leftrightarrow\widebat{B}+\widebat{C}=180^o-\widebat{A}\)

\(\Leftrightarrow\frac{\widebat{B}}{2}+\frac{\widebat{C}}{2}=90^o-\frac{\widebat{A}}{2}\)

\(\Leftrightarrow\widebat{BIC}=180^o-\left(90^o-\frac{\widebat{A}}{2}\right)=90^o+\frac{\widebat{BAC}}{2}\left(đpcm\right).\)

c) Áp dụng định lý Pytago:

IA2 = ID + AD2 

IB2 = ID2 + BD2 

=> IA2 + IB2 = 2ID2 +AD2 +BD2 ( đpcm ).

d) Chưa nghĩ ra.

Lưu ý: Làm hơi tắt.

d, Từ I kẻ đường thẳng vuông góc với BC cắt BC tại F.

Xét tam giác vuông DIB và FIB có BD = BF.

CM tương tự : CE = CF

BF + CF =BC => CE + BD = BC.