K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEB và ΔAFC có 

\(\widehat{ABE}=\widehat{ACF}\)

AB=AC

\(\widehat{BAC}\) chung
Do đó: ΔAEB=ΔAFC
Suy ra: AE=AF

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

c: Xét ΔFBI và ΔECI có 

\(\widehat{FBI}=\widehat{ECI}\)

FB=EC

\(\widehat{BFI}=\widehat{CEI}\)

Do đó: ΔFBI=ΔECI

Suy ra: IB=IC

hay I nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AI\(\perp\)BC

d: Xét ΔBIC có IB=IC

nên ΔBIC cân tại I

trả lời:

^BIC=180o-^B/2-^C/2=180o-(180o-^BAC)/2=90o+1/2 ^BAC

Chúc bn học tốt

8 tháng 8 2021

^BIC=180o-^B/2-^C/2=180o-(180o-^BAC)/2=90o+1/2 ^BAC

~ HT ~

trả lời:

^BIC=180o-^B/2-^C/2=180o-(180o-^BAC)/2=90o+1/2 ^BAC

Chúc bn học tốt

31 tháng 12 2023

a:

Sửa đề: Chứng minh DE\(\perp\)BC

Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
=>\(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

b: Sửa đề: F là giao điểm của AB và DE

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDAF=ΔDEC

=>AF=EC

 

22 tháng 10 2023

a: Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

=>\(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}\)

=>\(2\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\widehat{BAC}\)

=>\(\widehat{IBC}+\widehat{ICB}=90^0-\dfrac{1}{2}\cdot\widehat{BAC}\)

Xét ΔIBC có \(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)

=>\(\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)\)

\(=180^0-90^0+\dfrac{1}{2}\cdot\widehat{BAC}=90^0+\dfrac{1}{2}\cdot\widehat{BAC}\)

b: Xét ΔIMB và ΔEMC có

MI=ME

\(\widehat{IMB}=\widehat{EMC}\)

MB=MC

Do đó: ΔIMB=ΔEMC

c: IM=1/2IE

mà IM=1/2BI

nên IB=IE

Xét ΔBIE vuông tại I có IB=IE

nên ΔBIE vuông cân tại I

=>\(\widehat{IEB}=45^0\)

Xét tứ giác BICE có

M là trung điểm chung của BC và IE

nên BICE là hình bình hành

=>BE//CI

=>\(\widehat{BEI}=\widehat{EIC}\)(hai góc so le trong)

mà \(\widehat{BEI}=45^0\)

nên \(\widehat{EIC}=45^0\)

\(\widehat{BIC}=\widehat{BIE}+\widehat{EIC}\)

\(=90^0+45^0=135^0\)

\(\widehat{BIC}=90^0+\dfrac{1}{2}\cdot\widehat{BAC}\left(cmt\right)\)

=>\(\dfrac{1}{2}\cdot\widehat{BAC}=135^0-90^0=45^0\)

=>\(\widehat{BAC}=90^0\)