Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
Xét tam giác CDB và BAC
có BC chung
góc ABC= góc BCD ( AB//CD, so le trong)
\(\widehat{DBC}=\widehat{BCA}\)( BD// AC, so le trong)
=> tam giác CDB= BAC
b) Xét \(\Delta ABM\)và \(\Delta CEM\)
có MA=MC (M là trung điểm)
MB=ME ( Giả thiết)
và \(\widehat{AMB}=\widehat{CME}\)( đối đỉnh)
=> \(\Delta ABM\)= \(\Delta CEM\)(c.g.c)
=> \(\widehat{MCE}=\widehat{MAB}=90^o\)
=> CE vuông AC
c) góc MCE= MAB
=> AB// CE
mà AB // DC
=> D, C, E thẳng hàng (1)
tam giác CDB= tam giác BAC (câu a)
=> AB=CD (2)
\(\Delta ABM\)=\(\Delta CEM\)(câu b)
=> AB=CE(3)
Từ (1) (2) (3) => C là trung điểm DE
a: Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
=>\(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}\)
=>\(2\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\widehat{BAC}\)
=>\(\widehat{IBC}+\widehat{ICB}=90^0-\dfrac{1}{2}\cdot\widehat{BAC}\)
Xét ΔIBC có \(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)
=>\(\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)\)
\(=180^0-90^0+\dfrac{1}{2}\cdot\widehat{BAC}=90^0+\dfrac{1}{2}\cdot\widehat{BAC}\)
b: Xét ΔIMB và ΔEMC có
MI=ME
\(\widehat{IMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔIMB=ΔEMC
c: IM=1/2IE
mà IM=1/2BI
nên IB=IE
Xét ΔBIE vuông tại I có IB=IE
nên ΔBIE vuông cân tại I
=>\(\widehat{IEB}=45^0\)
Xét tứ giác BICE có
M là trung điểm chung của BC và IE
nên BICE là hình bình hành
=>BE//CI
=>\(\widehat{BEI}=\widehat{EIC}\)(hai góc so le trong)
mà \(\widehat{BEI}=45^0\)
nên \(\widehat{EIC}=45^0\)
\(\widehat{BIC}=\widehat{BIE}+\widehat{EIC}\)
\(=90^0+45^0=135^0\)
\(\widehat{BIC}=90^0+\dfrac{1}{2}\cdot\widehat{BAC}\left(cmt\right)\)
=>\(\dfrac{1}{2}\cdot\widehat{BAC}=135^0-90^0=45^0\)
=>\(\widehat{BAC}=90^0\)