Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDB và ΔBAC có
\(\widehat{DCB}=\widehat{ABC}\)
CB chung
\(\widehat{DBC}=\widehat{ACB}\)
Do đó: ΔCDB=ΔBAC
b: Xét ΔMCE và ΔMAB có
MC=MA
\(\widehat{EMC}=\widehat{BMA}\)
ME=MB
Do đó: ΔMCE=ΔMAB
Xét tứ giác ABCE có
M là trung điểm của AC
M là trung điểm của BE
Do đó: ABCE là hình bình hành
Suy ra: CE//AB và CE=AB
hay CE⊥AC
c: Ta có: CD//AB
CE//AB
mà CD,CE có điểm chung là C
nên E,C,D thẳng hàng
mà EC=CD(=AB)
nên C là trung điểm của DE
Tham khảo
Câu hỏi của Hot girl 2k5 - Toán lớp 7 - Học toán với OnlineMath
mik ko hieu cau c cho lam, ai giang giup mik cau c voi :((
(Bạn tự vẽ hình giùm)
a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)
DM = BM (gt)
=> \(\Delta ADM\)= \(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)
b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)
=> AC _|_ CD (đpcm)
a) Xét ΔCBM và ΔADM có:
AM=MC (giả thtết)
gócCMB=gócAMD ( đối đỉnh)
BM=MD (giả thiết)
⇒ ΔCBM=ΔADM (c.g.c)
BC=DA (hai cạnh tương ứng)
b) Xét ΔABM và ΔCDM có:
AM=CM (giả thiết)
gócAMB=gócCMD(đối đỉnh)
BM=DM (giả thiết)
⇒ ΔABM=ΔCDM (c.g.c)
gócBAM=gócDCM=90độ (hai góc tương ứng) (đpcm)
⇒ DC⊥AC (đpcm)
c) Ta có BN//AC mà AC⊥DC
⇒ BN⊥DC ⇒gócBND=90độ
AB//CD (do cùng ⊥AC)
Xét ΔABC và ΔNBC có:
gócABC=gócNCB (hai góc ở vị trí so le trong)
BC chung
gócACB=gócNBC (do BN//AC nên đó là hai góc ở vị trí so le trong)
⇒ ΔABC=ΔNBC (g.c.g)
⇒ AB=NC (hai cạnh tương ứng)
Xét ΔABM và ΔCNM có:
AB=CN (cmt)
góc BAM=gócNCM=90độ
góc BAM= gócNCM=90độ
AM=CM (giả thiết)
⇒ ΔABM=ΔCNM (đpcm)
a: XétΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó:ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC
c: Xét ΔMCE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔMCE cân tại C
mà CA là đường cao
nên CA là tia phân giác của góc MCE
Xét tam giác CDB và BAC
có BC chung
góc ABC= góc BCD ( AB//CD, so le trong)
\(\widehat{DBC}=\widehat{BCA}\)( BD// AC, so le trong)
=> tam giác CDB= BAC
b) Xét \(\Delta ABM\)và \(\Delta CEM\)
có MA=MC (M là trung điểm)
MB=ME ( Giả thiết)
và \(\widehat{AMB}=\widehat{CME}\)( đối đỉnh)
=> \(\Delta ABM\)= \(\Delta CEM\)(c.g.c)
=> \(\widehat{MCE}=\widehat{MAB}=90^o\)
=> CE vuông AC
c) góc MCE= MAB
=> AB// CE
mà AB // DC
=> D, C, E thẳng hàng (1)
tam giác CDB= tam giác BAC (câu a)
=> AB=CD (2)
\(\Delta ABM\)=\(\Delta CEM\)(câu b)
=> AB=CE(3)
Từ (1) (2) (3) => C là trung điểm DE