Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì bạn nói đã giải câu a, b rồi nên mình chỉ giải câu c thôi
Ta có: HAK + EAK + HAD = 90 độ
=> HAK + EKA + AHD = 90 độ
=> HAK + 90 độ - AKH + 90 độ - AHK = 90 độ
=> AKH + AHK - HAK = 90 độ
=> 180 độ - HAK - AHK + AHK - HAK = 90 độ
=> 2HAK = 90 độ
=> HAK = 45 độ
Chỗ nào ko hiểu bn nhớ hỏi mình nha
cảm ơn bạn nha
bạn cho mình hỏi muốn k câu trả lời thì làm thế nào????
a) Xét ΔBAD và ΔBED có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔBAD=ΔBED(c-g-c)
a) Ta có: ΔBAD=ΔBED(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)
hay DE\(\perp\)BE(đpcm)
a) Xét Δ ABI và Δ BDI ta có :
BD=BA (đề bài)
Góc ABI = Góc IBD (BI là phân giác góc ABC)
BI là cạnh chung
⇒ Δ ABI = Δ BDI (cạnh, góc, cạnh)
⇒ IA=ID
b) Gọi E là giao điểm của BI và AD
Ta có : BD=BA
⇒ Δ ABD là Δ cân tại B
mà BE là đường phân giác (BI là phân giác và B,E,I thẳng hàng)
⇒ BE là đường cao Δ ABD
⇒ BE \(\perp\) AD
⇒ BI \(\perp\) AD
mà BD=BA (đề bài) và ID=IA (cmt)
⇒ BI là đường trung trực của AD
c) vì Δ ABI = Δ BDI
mà A=90o , Góc ABI = Góc IBD
⇒ Góc BDI = 90o
⇒ ID \(\perp\) BC
d) Xét Δ ABI và Δ BAM ta có :
AM=AI (đề bài)
Góc BAI = Góc BAM =90o (do M,A,I thẳng hàng)
AB là cạnh chung
⇒ Δ ABI = Δ BAM (cạnh, góc, cạnh)
⇒ Góc ABI= Góc ABM
⇒ AB là phân giác góc MBI
e) BM=BI (Δ ABI = Δ BAM)
a) Xet tam giac ABD va tam giac EBD co :
AB=BE (gt)
Goc B1=goc B2 ( BD la tia phan giac cua goc ABC)
BD chung
Suy ra tam giac ABD = tam giac EBD (c-g-c)
b) Goi I la giao diem cua AE va BD
Xet tam giac BAI va tam giac BEI co :
AB=BE(gt)
Goc B1=goc B2 ( BD la tia phan giac cua goc ABC)
AI chung
Suy ra tam giac BAI = tam giac BEI (c-g-c)
Suy ra goc I1=goc I2 ( hai goc tuong ung)
Ma goc I1+I2=180do ( hai goc ke bu)
Suy ra goc I1=goc I2=180 do:2=90 do (1)
Suy ra BI vuong goc voi AE ( dinh nghia) (2)
Tu (1) va (2) ta suy ra BD la duong trung truc cua AE
c) Tam giac ABD = tam giac EBD (cmt)
Suy ra goc BAD= goc BED ( hai goc tuong ung)
Ma goc BAD =90 do(gt)
Suy ra goc EBD=90 do
Suy ra ED vuong goc voi BC ( dinh nghia )
Ma AH vuong goc voi BC (gt)
Suy ra AH // DE ( theo quan he tu vuong goc den song song)
d) Tam giac ABC co:
Goc ABC + goc BAC +goc C=180 do ( dinh li tong ba goc trong tam giac)
Suy ra goc ABC=180 do -(goc BAC +goc C)
Hay goc ABC =180 do -(90 do+ goc C)(1)
Tam giac EDC co:
Goc EDC+ goc DEC + goc C=180 do ( dinh li tong ba goc trong tam giac)
Suy ra goc EDC=180 do -(goc DEC +goc C)
Hay goc EDC=180 do -(90 do + goc C)(2)
Tu (1) va (2) ta suy ra goc ABC= goc EDC (=180do-(90 do+goc C))
Nho mik nh ban !
A: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE và góc BED=90 độ
b: BA=BE
DA=DE
=>BD là trung trực của AE
DA=DE
DE<DC
=>DA<DC
GT tam giác ABC cân
\(\widehat{A}< 90^o\)
\(BD\perp AC\left(D\in AC\right)\)
\(CE\perp AB\left(E\in AB\right)\)
BD và CE cắt nhau tại H
KL : BD = CD
tam giác BHC cân
AH là đường trung trực của BC
a) Xét tam giác BDC và tam giác CEB có
\(\widehat{BDC}=\widehat{CEB}=90^o\)
BC cạnh chung
\(\widehat{H_1}=\widehat{H_3}\)( 2 góc kề bù )
=> tam giác BDC = tam giác CEB (g-c-g)
=> BD = CE ( 2 cạnh tương ứng )
b) Vì tam giác ABC là tam giác cân
=> \(\widehat{B}=\widehat{C}\)
Vì \(\widehat{B}=\widehat{C}\)
=> tam giác BHC cân
c) Kẻ AH
chép tại https://olm.vn/hoi-dap/detail/79620623509.html :v
a) Xét ∆ADB và ∆AEC có:
AB=AC (gt)
góc ABD= góc ACE (gt)
BD=CE(gt)
=>∆ADB=∆AEC(c.g.c0
=>AD=AC (2 cạnh tương ứng)
=>∆ADE là ∆cân tại A
b)Xét ∆BHD và ∆CKE có:
góc BHD=góc EHC=90
BD=CE(gt)
góc B=góc C(gt)
=>∆BHD=∆CKE(cạnh huyền góc nhọn)
=>DH=EK(2 cạnh tương ứng)(đpcm)
c)∆BHD=∆CKE(cmt) =>góc HDB =góc KEC (2cạnh tương ứng)
mà ∠HDB=∠EDO( đối đỉnh), ∠KEC=∠DEO(đối đỉnh)
=>∠EDO=∠DEO =>∆ODE cân tại O (đpcm)