Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔABE có
BO là đường cao
BO là đường phân giác
Do đó: ΔABE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔABE đều
2: Xét ΔEBD và ΔABD có
BA=BE
\(\widehat{EBD}=\widehat{ABD}\)
BD chung
Do đó: ΔEBD=ΔABD
Suy ra: DE=DA
hay ΔDEA cân tại D(1)
\(\widehat{CEA}=180^0-60^0=120^0\)
\(\widehat{C}=180^0-105^0-60^0=15^0\)
=>\(\widehat{DAE}=180^0-120^0-15^0=45^0\)(2)
Từ (1) và (2) suy ra ΔDEA vuông cân tại D
Câu hỏi của Nguyễn Anh Thư - Toán lớp 7 - Học toán với OnlineMath
Câu a ) - Chứng minh tam giác vuông ABD = tam giác vuông ACE ( cạnh huyền - góc nhọn ) => Tự chứng minh
Câu b ) - Vì tam giác vuông ABD = tam giác vuông ACE ( ở câu a )
=> Góc B1 = góc C1 ( 2 góc tương ứng )
- Vì tam giác ABC là tam giác cân => góc B = góc C
Ta có góc B1 + góc B2 = góc C1 + C2
=> Góc B2 = góc C2
- Vậy tam giác HBC là tam giác cân
Câu c )