Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ M, N là trung điểm của AB, AC ⇒ MN là đường trung bình của △ABC, MN // BC (1)
Vậy: MNCB là hình thang (đpcm)
==========
b/ Do MN là đường trung bình của △ABC
Vậy: \(MN=\dfrac{BC}{2}\Rightarrow BC=MN.2=3,5.2=7cm\)
==========
c/ Do E là trung điểm của BC \(\Rightarrow CE=\dfrac{BC}{2}\)
- Mà \(MN=\dfrac{BC}{2}\Rightarrow MN=CE\left(2\right)\)
Từ (1) và (2). Vậy: MNCE là hình bình hành (đpcm)
b: Xét ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Do đó: MN//BC
Xét tứ giác MNCB có MN//BC
nên MNCB là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên MNCB là hình thang cân
a: Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Do đó: DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BDEC là hình thang cân
a) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của AC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay \(BC=2\cdot MN=2\cdot8=16\left(cm\right)\)
b) Xét tứ giác BMNC có MN//BC(cmt)
nên BMNC là hình thang(Định nghĩa hình thang)
Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
nên BMNC là hình thang cân
a: Xét ΔABC có
M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>MN//BC và \(MN=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
b: Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
Hình thang BMNC có \(\widehat{MBC}=\widehat{NCB}\)
nên BMNC là hình thang cân
c: Ta có: \(MN=\dfrac{BC}{2}\)
mà \(MN=\dfrac{MP}{2}\)
nên BC=MP
Ta có: MN//BC
P\(\in\)MN
Do đó: MP//BC
Xét tứ giác MBCP có
MP//BC
MP=BC
Do đó: MBCP là hình bình hành
Sửa đề: Chứng minh AHCQ là hình chữ nhật
Xét tứ giác AHCP có
N là trung điểm chung của AC và HP
=>AHCP là hình bình hành
Hình bình hành AHCP có \(\widehat{AHC}=90^0\)
nên AHCP là hình chữ nhật
d: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Xét ΔBAC có
H,M lần lượt là trung điểm của BC,BA
=>HM là đường trung bình của ΔBAC
=>HM//AC và HM=AC/2
Tứ giác AMHC có HM//AC
=>AMHC là hình thang
e:
Ta có: \(HM=\dfrac{AC}{2}\)
\(AN=\dfrac{AC}{2}\)
Do đó: HM=AN
Xét tứ giác AMHN có
HM//AN
HM=AN
Do đó: AMHN là hình bình hành
=>AH cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và MN
Ta có: AHCQ là hình chữ nhật
=>AQ//HC và AQ=HC
Ta có: AQ//HC
H\(\in\)BC
Do đó: AQ//HB
ta có: AQ=HC
HB=HC
Do đó: AQ=HB
Xét tứ giác ABHQ có
AQ//BH
AQ=BH
Do đó: ABHQ là hình bình hành
=>AH cắt BQ tại trung điểm của mỗi đường
a: \(S_{ABC}=\dfrac{1}{2}\cdot8\cdot4=16\left(cm^2\right)\)
b: Xét tứ giác AHBE có
M là trung điểm chung của AB và HE
góc AHB=90 độ
=>AHBE là hình chữ nhật
c: Xét tứ giác ABFC có
H là trung điểm chung của AF và BC
AB=AC
=>ABFC là hình thoi