K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong  ∆ ABC ta lấy điểm M. Nối MA, MB, MC.

Ta cần làm xuất hiện tổng MA + MB + MC sau đó tìm điều kiện để tổng đó nhỏ nhất.

Lấy MC làm cạnh dựng trên nửa mặt phẳng bờ BC chứa điểm A tam giác đều MCN. Suy ra: CM = MN.

Lấy AC làm cạnh dựng trên nửa mặt phẳng bờ AC không chứa điểm B tam giác đều APC. Khi đó, CA = CP

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét  ∆ AMC và  ∆ PNC:

CM = CN (vì ΔMCN đều)

CA = CP (vì ΔAPC đều)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra:  ∆ AMC =  ∆ PNC (c.g.c)

⇒ PN = AM

MA + MB + MC = NP + MB + MN

Ta có ∆ ABC cho trước nên điểm P cố định nên BM + MN + NP ngắn nhất khi 4 điểm B, M, N, P thẳng hàng.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

7 tháng 8 2016

A B C M D E N P

Ta dựng các tam giác đều AMP , AMN , ACE , ABD , suy ra N,P,E,D cố định.

Dễ dàng chứng minh được \(\Delta APE=\Delta AMC\left(c.g.c\right)\) 

 \(\Rightarrow MC=PE\)\(AM=MP\)

Suy ra : \(AM+MC+BM=BM+MP+PE\ge BE\)(hằng số)

Tương tự , ta cũng chứng minh được \(AM=MN\)\(BM=DN\)

\(\Rightarrow AM+MC+MB=CM+MN+DN\ge CD\)(hằng số)

Suy ra MA + MB + MC đạt giá trị nhỏ nhất khi M là giao điểm của BE và CD.

Cần chú ý : Vì điều kiện các góc của tam giác nhỏ hơn 180 độ : 

\(\widehat{BAC}+\widehat{CAE}< 120^o+60^o=180\)

\(\widehat{BAC}+\widehat{BAD}< 120^o+60^o=180^o\)

nên BE cắt AC tại một điểm nằm giữa A và C , CD cắt AB tại một điểm nằm giữa A và B. Do đó tồn tại giao điểm M của CD và BE.

1 tháng 8 2016

em học lớp 7

24 tháng 2 2019

A B C M D E

a) Xét \(\Delta MBD\)và \(\Delta MAC\)

có: \(\widehat{MAC}=\widehat{MBD}\)( cùng chắn cung MC)

\(\widehat{BMD}=\widehat{AMC}\)( cung AB=cung AC vì AB=AC)

=>  \(\Delta MBD\)\(\Delta MAC\)

b) Từ câu a)_

=> \(\frac{MB}{MA}=\frac{BD}{AC}\)(1)

\(\frac{MC}{MA}=\frac{MD}{MB}\)(2)

Dễ dàng chứng minh đc:

\(\Delta BDM~\Delta ADC\)

=> \(\frac{MD}{MB}=\frac{DC}{AC}\)(3)

Từ (1), (2), (3)

=> \(\frac{MB}{MA}+\frac{MC}{MA}=\frac{BD}{AC}+\frac{CD}{AC}=\frac{BC}{AC}\)\(=\frac{BC}{AB}\)

c) Lấy điểm E thuộc đoạn

28 tháng 3 2015

a,xét tam giác DMB và DCA có:

góc BDM=ADC

góc BMD=ACD(góc nt cug chắn cug AB)

=>2 tam giác này đồng dạng vs nhau

28 tháng 3 2015

a, xé tam giác MBD cà MAC có:

góc MBD=MAC( góc nt cug chắn cung MC)

góc BMA=AMC(chắn 2 cug bằng nhau)

=>2 tam giác này đồng dạng vs nhau

11 tháng 4 2022
23 tháng 1 2020

cho mihf hỏi tam giác gì nội tiếp đường tròn O vậy

23 tháng 1 2020

mình nghĩ đề cho bổ sung là cho tam giác ABC đều nội tiếp đường tròn ( O ) vì mình đã từng làm rồi

lời giải :

A B C O M D

a) vì MD = MB nên \(\Delta MBD\)cân tại M

\(\widehat{BMD}=\widehat{BCA}=60^o\)( cùng chắn cung AB )

\(\Rightarrow\)\(\Delta MBD\)đều

b) Xét \(\Delta MBC\)và \(\Delta BDA\)có :

MB = BD ; BC = AB ; \(\widehat{MBC}=\widehat{DBA}\)( cùng cộng góc DBC bằng 60 độ )

\(\Rightarrow\Delta MBC=\Delta DBA\left(c.g.c\right)\)suy ra MC = AD

c) Mà MB = MD ( câu a )

nên MC + MB = MD + AD = MA

d) Ta có : MA là dây cung của ( O ; R ) \(\Rightarrow MA\le2R\)

\(\Rightarrow MB+MC+MA=2MA\le4R\)( không đổi )

Dấu " = " xảy ra \(\Leftrightarrow\)MA là đường kính hay M là điểm chính giữa của cung BC