Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
nên BFEC là tứ giác nội tiếp
hay B,F,E,C cùng thuộc một đường tròn
Tâm I là trung điểm của BC
b) Ta có: CH\(\perp\)AB(gt)
BK\(\perp\)AB(ΔABK vuông tại B)
Do đó: CH//BK(Định lí 1 từ vuông góc tới song song)
Ta có: BH\(\perp\)AC(gt)
CK\(\perp\)AC(ΔACK vuông tại C)
Do đó: BH//CK(Định lí 1 từ vuông góc tới song song)
Xét tứ giác BHCK có
CH//BK(cmt)
BH//CK(cmt)
Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
a) Xét (O) có
ΔABK nội tiếp đường tròn(A,B,K∈(O))
AK là đường kính(gt)
Do đó: ΔABK vuông tại B(Định lí)
Xét (O) có
ΔACK nội tiếp đường tròn(A,C,K∈(O))
AK là đường kính(gt)
Do đó: ΔACK vuông tại C(Định lí)
a)Gọi I là trung điểm của tam giác BC
Áp dụng đường trung tuyến cạnh huyền của tam giác EBC và DBC
=>IE=ID=IB=IC
=> tứ giác BCDE nội tiếp. tâm đường tròn là I
b)AFK=90 ( dg cao thứ 3)
ACK=90 (chắn nữa dg tròn)
=>AFB=ACK
c)BD vg góc với AC
ACK=90 =>CK vg góc với AC
=>CK song song với BH
tuong tu CH song song voi BK
=>BHCK là hinh binh hanh
*vì I là trung điểm của BC
=>I cung la trung diem cua HK
=>H,I,K thang hang
Lời giải:
a) Tứ giác $AFHE$ có tổng 2 góc đối nhau $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.
b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)
Xét tam giác $ABD$ và $AKC$ có:
$\widehat{ADB}=\widehat{ACK}=90^0$
$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)
$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)
$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$
$\Rightarrow AB.AC=AD.AK$ (đpcm)
Xét (O) có
ΔACK nội tiếp đường tròn
AK là đường kính
Do đó: ΔACK vuông tại C
Xét (O) có
ΔABK nội tiếp đường tròn
AK là đường kính
Do đó: ΔABK vuông tại B
Xét tứ giác BHCK có
BH//CK
CH//BK
Do đó: BHCK là hình bình hành
\(a,\) Vì \(\widehat{BEC}=\widehat{BFC}=90^0\) nên BFEC nội tiếp
Do đó B,C,E,F cùng thuộc 1 đường tròn
\(b,\) H là điểm nào?
đề bài đâu có I bạn ơi
a,
b, AK là đường kính=>tam giác ACK nội tiếp(O)
=>\(KC\perp AC\)
mà BE là đường cao=>\(BH\perp AC=>BH//KC\left(1\right)\)
làm tương tự \(=>CH//BK\left(2\right)\)
(1)(2)=>BHCK là hinh bình hành
còn điểm I ấy chắc là trung điểm của BC chăng?(đề chắc thiếu)
=>I cũng là trung điểm HK=>H,I,K thẳng hàng
thanks