K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

Xét (O) có 

ΔACK nội tiếp đường tròn

AK là đường kính

Do đó: ΔACK vuông tại C

Xét (O) có 

ΔABK nội tiếp đường tròn

AK là đường kính

Do đó: ΔABK vuông tại B

Xét tứ giác BHCK có 

BH//CK

CH//BK

Do đó: BHCK là hình bình hành

a: Xét tứ giác AEHF có

góc AEH+góc AFH=180 độ

=>AEHF là tứ giác nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔABK nội tiếp

AK là đường kính

=>ΔABK vuông tại B

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>I là trung điểm của BC

9 tháng 6 2021

a) Ta có: \(\angle AEB=\angle ADB=90\Rightarrow ABDE\) nội tiếp

b) Vì AK là đường kính \(\Rightarrow\angle ACK=\angle ABK=90\)

\(\Rightarrow\left\{{}\begin{matrix}CK\bot AC\\BK\bot AB\end{matrix}\right.\) mà \(\left\{{}\begin{matrix}BH\bot AC\\CH\bot AC\end{matrix}\right.\Rightarrow\) \(BH\parallel CK,CH\parallel BK\)

\(\Rightarrow BHCK\) là hình bình hành

c) Vì F là giao điểm của CH và AB \(\Rightarrow CF\bot AB\)

Ta có: \(\dfrac{AD}{HD}+\dfrac{BE}{HE}+\dfrac{CF}{HF}=\dfrac{AD.BC}{HD.BC}+\dfrac{BE.AC}{HE.AC}+\dfrac{CF.AB}{HF.AB}\)

\(=\dfrac{S_{ABC}}{S_{HBC}}+\dfrac{S_{ABC}}{S_{AHC}}+\dfrac{S_{ABC}}{S_{AHB}}=S_{ABC}\left(\dfrac{1}{S_{HBC}}+\dfrac{1}{S_{AHC}}+\dfrac{1}{S_{AHB}}\right)\)

\(\ge S_{ABC}.\dfrac{9}{S_{HBC}+S_{HAC}+S_{AHB}}\)(BĐT Schwarz) \(=S_{ABC}.\dfrac{9}{S_{ABC}}=9\)

\(\Rightarrow Q_{min}=9\)undefined

28 tháng 1 2022

tưởng tổng 2 góc đối =180 thì mới là tứ giác nội tiếp

 

a: Xét tứ giác AEHF có

góc AEH+góc AFH=180 độ

=>AEHF là tứ giác nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔABK nội tiếp

AK là đường kính

=>ΔABK vuông tại B

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>I là trung điểm của BC

9 tháng 8 2021

đề bài đâu có I bạn ơi

a,

b, AK là đường kính=>tam giác ACK nội tiếp(O)

=>\(KC\perp AC\)

mà BE là đường cao=>\(BH\perp AC=>BH//KC\left(1\right)\)

làm tương tự \(=>CH//BK\left(2\right)\)

(1)(2)=>BHCK là hinh bình hành

còn điểm I ấy chắc là trung điểm của BC chăng?(đề chắc thiếu)

=>I cũng là trung điểm HK=>H,I,K thẳng hàng

9 tháng 8 2021

thanks 

 

 

 

a: Xét (O) có

ΔABM nội tiếp

AM là đường kính

Do đó: ΔABM vuông tại B

=>BM\(\perp\)AB

mà CH\(\perp\)AB

nên CH//BM

Xét (O) có

ΔACM nội tiếp

AM là đường kính

Do đó: ΔACM vuông tại C

=>AC\(\perp\)CM

mà BH\(\perp\)AC

nên BH//CM

Xét tứ giác BHCM có

BH//CM

BM//CH

Do đó: BHCM là hình bình hành

b:

Xét ΔABC có

BE,CF là các đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại D

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AMC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AMC}\)

Ta có: \(\widehat{ABC}+\widehat{BAN}=90^0\)(ΔADB vuông tại D)

\(\widehat{AMC}+\widehat{MAC}=90^0\)(ΔACM vuông tại C)

mà \(\widehat{ABC}=\widehat{AMC}\)

nên \(\widehat{BAN}=\widehat{MAC}\)

Xét (O) có

ΔANM nội tiếp

AM là đường kính

Do đó: ΔANM vuông tại N

=>AN\(\perp\)NM

mà AN\(\perp\)BC

nên BC//NM

Ta có: \(\widehat{CHD}=\widehat{ABC}\)(=90 độ-góc FCB)

\(\widehat{ABC}=\widehat{ANC}\)

Do đó: \(\widehat{CHD}=\widehat{ANC}\)

=>ΔCHN cân tại C

=>CH=CN

mà CH=BM

nên BM=CN

Xét tứ giác BCMN có BC//MN

nên BCMN là hình thang

Hình thang BCMN có BM=CN

nên BCMN là hình thang cân