Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vé hình nhé.
Gọi M là trung điểm của BC
=> ME là đường trung tuyến ứng với cạnh huyền của tam giác vuông EBC => ME=MB=MC (1)
=> MF ...........................................................................................FBC => MF=MB=MC (2)
(1)(2) => ME=MF=MB=MC
=> 4 điểm E,F,B,C cùng thuộc dường tròn tâm M đường kính BC
b, Đường cao của đường tròn là gì hả bạn??
Tích cho mình nhé
Tý Giải tiếp nếu đè bài đúng
a) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
nên BFEC là tứ giác nội tiếp
hay B,F,E,C cùng thuộc một đường tròn
Tâm I là trung điểm của BC
a: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
=>B,F,E,C cùng thuộc một đường tròn
b: Xét (O) có
ΔABA' là tam giác nội tiếp
AA' là đường kính
Do đó: ΔABA' vuông tại B
=>BA'\(\perp\)AB
mà CH\(\perp\)AB
nên BA'//CH
Xét (O) có
ΔACA' là tam giác nội tiếp
AA' là đường kính
Do đó: ΔACA' vuông tại C
=>AC vuông góc CA'
mà BH vuông góc AC
nên BH//A'C
Xét tứ giác BHCA' có
BH//CA'
BA'//CH
Do đó: BHCA' là hình bình hành
a: Xét (O) có
ΔABK nội tiếp
AK là đường kính
Do đó: ΔABK vuông tại B
=>BK vuông góc với AB
=>BK//CH
Xét (O) có
ΔACK nội tiếp
AK là đường kính
Do đó: ΔACK vuông tại C
=>AC vuông góc với CK
=>CK//BH
Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó: BHCK là hình bình hành
b: Vì BHCK là hình bình hành
nên BC cắt HK tại trung điểm của mỗi đường
=>M là trung điểm của HK
Xét ΔKAH có
KO/KA=KM/KH
nên OM//AH và OM/AH=KO/KA=1/2
=>OM=1/2AH
\(a,\) Vì \(\widehat{BEC}=\widehat{BFC}=90^0\) nên BFEC nội tiếp
Do đó B,C,E,F cùng thuộc 1 đường tròn
\(b,\) H là điểm nào?