K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

đề bài đâu có I bạn ơi

a,

b, AK là đường kính=>tam giác ACK nội tiếp(O)

=>\(KC\perp AC\)

mà BE là đường cao=>\(BH\perp AC=>BH//KC\left(1\right)\)

làm tương tự \(=>CH//BK\left(2\right)\)

(1)(2)=>BHCK là hinh bình hành

còn điểm I ấy chắc là trung điểm của BC chăng?(đề chắc thiếu)

=>I cũng là trung điểm HK=>H,I,K thẳng hàng

9 tháng 8 2021

thanks 

 

 

 

13 tháng 10 2023

a: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>B,F,E,C cùng thuộc một đường tròn

b: Xét (O) có

ΔABA' là tam giác nội tiếp

AA' là đường kính

Do đó: ΔABA' vuông tại B

=>BA'\(\perp\)AB

mà CH\(\perp\)AB

nên BA'//CH

Xét (O) có

ΔACA' là tam giác nội tiếp

AA' là đường kính

Do đó: ΔACA' vuông tại C

=>AC vuông góc CA'

mà BH vuông góc AC

nên BH//A'C

Xét tứ giác BHCA' có

BH//CA'

BA'//CH

Do đó: BHCA' là hình bình hành

a) Ta có: \(\widehat{CFB}=90^0\)(CF⊥AB)

nên F nằm trên đường tròn đường kính CB(Định lí)(1)

Ta có: \(\widehat{CEB}=90^0\)(BE⊥AC)

nên E nằm trên đường tròn đường kính CB(Định lí)(2)

Từ (1) và (2) suy ra F,E cùng nằm trên đường tròn đường kính CB

hay B,E,F,C cùng thuộc một đường tròn(đpcm)

Tâm I của đường tròn ngoại tiếp tứ giác BEFC là trung điểm của CB

b) Ta có: BEFC là tứ giác nội tiếp(cmt)

nên \(\widehat{EFC}=\widehat{EBC}\)(Cùng nhìn cạnh EC)

\(\Leftrightarrow\widehat{KFC}=\widehat{KBE}\)

Xét ΔKFC và ΔKBE có 

\(\widehat{FKB}\) chung

\(\widehat{KFC}=\widehat{KBE}\)(cmt)

Do đó: ΔKFC∼ΔKBE(g-g)

\(\dfrac{KF}{KB}=\dfrac{KC}{KE}\)(Các cặp cạnh tương ứng tỉ lệ)

\(KE\cdot KF=KB\cdot KC\)(đpcm)

1 tháng 3 2016

a)Gọi I là trung điểm của tam giác BC

Áp dụng đường trung tuyến cạnh huyền của tam giác EBC và DBC

=>IE=ID=IB=IC

=> tứ giác BCDE nội tiếp.  tâm đường tròn là I

b)AFK=90 ( dg cao thứ 3)

ACK=90 (chắn nữa dg tròn)

=>AFB=ACK

c)BD vg góc với AC

ACK=90 =>CK vg góc với AC

=>CK song song với BH

tuong tu CH song song voi BK

=>BHCK là hinh binh hanh

*vì I là trung điểm của BC 

=>I cung la trung diem cua HK

=>H,I,K thang hang

13 tháng 5 2021
Alo blu đen sô
13 tháng 5 2021
Alo bluuu đen sô
16 tháng 9 2019

HS tự làm

22 tháng 3 2021

a) Xét (O,R)(O,R) đường kính BCBC có

ˆBFC=ˆBEC=90oBFC^=BEC^=90o (góc nội tiếp chắn nửa đường tròn)

⇒ˆAFH=ˆAEH=90o⇒AFH^=AEH^=90o

Tứ giác AFHEAFHE có ˆAFH+ˆAEH=180oAFH^+AEH^=180o

⇒AEFH⇒AEFH thuộc đường tròn đường kính (AH)(AH)

Tâm II là trung điểm của AHAH.

b) Xét ΔAHEΔAHE và ΔBHDΔBHD có:

 ˆAEH=ˆBDH=90oAEH^=BDH^=90o

ˆAHE=ˆBHDAHE^=BHD^ (đối đỉnh)

⇒ΔAHE∼ΔBHD⇒ΔAHE∼ΔBHD (g-g)

⇒HEHD=HAHB⇒HEHD=HAHB (hai cạnh tương ứng tỉ lệ) 

Mà HA=2HIHA=2HI

⇒HE.HB=2HD.HI⇒HE.HB=2HD.HI

c) Tứ giác AEHFAEHF nội tiếp đường tròn đường kính (AH)(AH) chứng minh câu a

⇒IE=IH=R⇒ΔIEH⇒IE=IH=R⇒ΔIEH cân đỉnh II

⇒ˆIEH=ˆIHE⇒IEH^=IHE^

ˆIHE=ˆBHDIHE^=BHD^ (đối đỉnh)

Từ hai điều trên ⇒ˆIEH=ˆBHD⇒IEH^=BHD^

ˆHEO=ˆHBDHEO^=HBD^ (do ΔOEBΔOEB cân đỉnh O)

⇒ˆIEO=ˆIEH+ˆHEO=ˆBHD+ˆHBD=90o⇒IEO^=IEH^+HEO^=BHD^+HBD^=90o (do ΔDHB⊥DΔDHB⊥D)

⇒IE⊥EO⇒IE⇒IE⊥EO⇒IE là tiếp tuyến của (O)(O).

Chứng minh tương tự

ˆIFH=ˆIHF=ˆDHCIFH^=IHF^=DHC^

ˆHFO=ˆOCHHFO^=OCH^

⇒ˆIFO=ˆDHC+ˆOCH=90o⇒IFO^=DHC^+OCH^=90o

⇒IF⊥FO⇒IF⇒IF⊥FO⇒IF là tiếp tuyến của (O)(O)

image