K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Khi xét ΔABC có

AE là đường phân giác góc ngoài ứng với cạnh BC(gt)

nên:\(\dfrac{EB}{EC}\)=\(\dfrac{AB}{AC}\)(Ta có tính chất đường phân giác của hình tam giác)

\(\dfrac{EB}{EC}=\dfrac{16}{32}=\dfrac{1}{2}\)

\(EB=\dfrac{1}{2}.EC\)

Nhưng  \(E,B,C\) thẳng hàng

⇒ \(B\) là trung điểm của \(EC\)(đpcm)

a) Xét ΔABC có 

AE là đường phân giác góc ngoài tại đỉnh A(gt)

nên \(\dfrac{EB}{EC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác góc ngoài của tam giác)

\(\Leftrightarrow\dfrac{EB}{EC}=\dfrac{16}{32}=\dfrac{1}{2}\)

\(\Leftrightarrow EB=\dfrac{EC}{2}\)

mà E,B,C thẳng hàng(gt)

nên B là trung điểm của EC(đpcm)

b) Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)

\(\dfrac{BD}{16}=\dfrac{CD}{32}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{16}=\dfrac{CD}{32}=\dfrac{BD+CD}{16+32}=\dfrac{BC}{48}=\dfrac{21}{48}=\dfrac{7}{16}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{16}=\dfrac{7}{16}\\\dfrac{CD}{32}=\dfrac{7}{16}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=7\left(cm\right)\\CD=14\left(cm\right)\end{matrix}\right.\)

Ta có: EB=BC(B là trung điểm của EC)

mà BC=21cm(gt)

nên EB=21cm

Ta có: EB+BD=ED(B nằm giữa E và D)

nên ED=21+7

hay ED=28(cm)

Vậy: DE=28cm

Xét ΔABC có 

AE là đường phân giác góc ngoài ứng với cạnh BC(gt)

nên \(\dfrac{EB}{EC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{EB}{EC}=\dfrac{16}{32}=\dfrac{1}{2}\)

\(\Leftrightarrow EB=\dfrac{1}{2}\cdot EC\)

mà E,B,C thẳng hàng

nên B là trung điểm của EC(đpcm)

 

a: Xét ΔIAB có ID là phân giác

nên DA/DB=AI/IB=AI/IC

Xét ΔIAC có IE là phân gíac

nên AE/EC=AI/IC

=>DA/DB=EA/EC

=>DE//BC

b: Xét ΔABI có DO//BI

nên DO/BI=AO/AI

Xét ΔACI co EO//IC

nên EO/IC=AO/AI

=>DO/BI=EO/IC

mà BI=IC

nên DO=EO

=>O là trung điểm của DE

\(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)

AK là phân giác

=>BK/AB=CK/AC

=>BK/3=CK/5=16/8=2

=>BK=6cm

11 tháng 5 2023

hình đâu?, có lời giải mà ko có hình như không!

Y
4 tháng 2 2019

A C D E B

a) Xét ΔABC có AE là đường phân giác ta có :

\(\dfrac{EB}{EC}=\dfrac{AB}{AC}=\dfrac{1}{2}\)

=> B là trung điểm của EC

=> BE = BC = 21 (cm )

b) + Xét ΔABC , AD là đường phân giác ta có :

\(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{1}{2}\) \(\Rightarrow\dfrac{BD}{BC}=\dfrac{1}{3}\)

=> BD = 7 ( cm )

Do đó : DE = BE + BD = 28 ( cm )

2 tháng 3 2022

a, Ta có:\(AB^2+AC^2=12^2+16^2=400\)(cm)

\(BC^2=20^2=400\)(cm)

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A

Xét Δ DNC và Δ ABC có:

\(\widehat{NDC}=\widehat{BAC}\left(=90^o\right)\)

Chung \(\widehat{C}\)

⇒Δ DNC \(\sim\) Δ ABC (g.g)

b, Ta có: BD=DC=1/2.BC=1/2.20=10(cm)

Δ DNC \(\sim\) Δ ABC (cma)

\(\Rightarrow\dfrac{ND}{AB}=\dfrac{NC}{BC}=\dfrac{DC}{AC}\Rightarrow\dfrac{ND}{12}=\dfrac{NC}{20}=\dfrac{10}{16}\Rightarrow\left\{{}\begin{matrix}ND=7,5\left(cm\right)\\NC=12,5\left(cm\right)\end{matrix}\right.\)

c, Xét Δ DBM và Δ ABC có:

Chung \(\widehat{B}\)

\(\widehat{BDM}=\widehat{BAC}\left(=90^o\right)\)

⇒Δ DBM \(\sim\) Δ ABC(g.g)

\(\Rightarrow\dfrac{MB}{BC}=\dfrac{BD}{AB}\Rightarrow\dfrac{MB}{20}=\dfrac{10}{12}\Rightarrow MB=\dfrac{50}{3}\left(cm\right)\)

Ta có: MD⊥BC, BD=DC ⇒ ΔBDC cân tại M

\(\Rightarrow MB=MC=\dfrac{50}{3}\left(cm\right)\)

13 tháng 4 2021

undefined

 Cho tam giác ABC có AB = 5cm, AC = 6cm và BC = 7cm. Tia phân giác của góc BAC cắt cạnh BC tại E.a)Tính các đoạn EB, EC.b) Chứng minh:  SABE/SACE = AB/AC.c) ) Kẻ trung tuyến AM, biết diện tích tam giác ABC là S. Tính diện tích tam giác AME  theo S.Bài 3. Cho tam giác ABC , đường phân giác góc A cắt BC tại D.a)Hãy viết tỉ lệ thức trong trường hợp trên .b) Vẽ đường phân giác góc C cắt AB tại F , viết tỉ lệ thức...
Đọc tiếp

 Cho tam giác ABC có AB = 5cm, AC = 6cm và BC = 7cm. Tia phân giác của góc BAC cắt cạnh BC tại E.

a)Tính các đoạn EB, EC.

b) Chứng minh:  SABE/SACE = AB/AC.

c) ) Kẻ trung tuyến AM, biết diện tích tam giác ABC là S. Tính diện tích tam giác AME  theo S.

Bài 3. Cho tam giác ABC , đường phân giác góc A cắt BC tại D.

a)Hãy viết tỉ lệ thức trong trường hợp trên .

b) Vẽ đường phân giác góc C cắt AB tại F , viết tỉ lệ thức trong trường hợp này.

c)Gọi BE là phân giác góc B , hãy viết tỉ lệ thức từ phân giác này .

d) Dựa vào các kết quả trên , chứng minh rằng: DB/DC. FB/FA. EA/EC = 1.

Bài 4. Cho tam giác ABC vuông tại A có AD là phân giác góc A . Kẻ DE // AC ( E  thuộc AB ). Biết AB = 21cm , AC = 28cm.

Tính độ dài các đoạn DB , DC và DE

Bài 5. Cho tam giác DEF có trung tuyến DM . Đường phân giác góc DME cắt DE tại G , đường phân giác góc DMF cắt DF tại H .

 a)Chứng minh rằng: GE/GD = HF/HD

b) Xác định vị trí của GH và EF ?

 

0