Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)ABD và \(\Delta\)ACD có:
AB = AC (gt)
AD: cạnh chung
BD = CD (D là trung điểm của BC)
\(\Rightarrow\Delta\)ABD = \(\Delta\)ACD (c.c.c)
b) Ta có: \(\Delta\)ABD = \(\Delta\)ACD (theo ý a)
\(\Rightarrow\widehat{BAD}\) = \(\widehat{CAD}\) (2 góc tương ứng)
\(\Rightarrow\) AD là tia phân giác của \(\widehat{BAC}\)
c) Ta có: \(\Delta\)ABD = \(\Delta\)ACD (theo ý a)
\(\Rightarrow\widehat{ADB}\) =\(\widehat{ADC}\) (2 góc tương ứng)
mà \(\widehat{ADB}\) + \(\widehat{ADC}\) = 18001800 (2 góc kề bù)
\(\Rightarrow\widehat{ADB}\) = \(\widehat{ADC}\) = 900900
\(\Rightarrow\) AD \(\perp\) BC
Lại có: d // BC (gt) \(\Rightarrow\) AD \(\perp\) d
ĐS:......................
#Châu's ngốc
a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
hay AB=AC
b: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
c: Xét ΔACD và ΔABE có
AC=AB
CD=BE
AD=AE
Do đó: ΔACD=ΔABE
d: Ta có: ΔABC can tại A
mà AH là đường cao
nên H là trung điểm của BC
Ta có: DB+BH=DH
CE+CH=HE
mà DB=CE
và BH=CH
nên DH=HE
hay H là trung điểm của DE
Xét ΔADE có AD=AE
nên ΔADE cân tại A
mà AH là đường trung tuyến
nên AH là tia phân giác của góc DAE
a/ Xét tam giác ABD và tam giác ACD có:
AB = AC (GT)
AD: cạnh chung
BD = CD (vì D là trung điểm BC)
=> tam giác ABD = tam giác ACD (c.c.c)
/ Ta có: tam giác ABD = tam giác ACD (câu a)
=> góc ADB = góc ADC (2 góc tương ứng)
Mà góc ADB + góc ADC = 1800 (kề bù)
=> góc ADB = góc ADC = 1800 : 2 = 900
Vậy AD vuông góc với BC (đpcm)
a, Vì tam giác ABC cân tại A
AB = AC ( tính chất )
Xét tam giác ABH và tam giác ACD có
AB = AC
AD chung
BD=DC
suy ra 2 tam giác bàng nhau ( c.c.c) đúng ko ae
\(a,\left\{{}\begin{matrix}AB=AC\\BD=DC\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABD=\Delta ACD\left(c.c.c\right)\\ b,\Delta ABD=\Delta ACD\\ \Rightarrow\widehat{BAD}=\widehat{CAD}\\ c,\Delta ABD=\Delta ACD\\ \Rightarrow\widehat{ADB}=\widehat{ADC}\\ \text{Mà }\widehat{ADB}+\widehat{ADC}=180^0\\ \Rightarrow\widehat{ADC}=\widehat{ADB}=90^0\\ \Rightarrow AD\perp BC\)