K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

a/ Xét tam giác ABD và tam giác ACD có:

AB = AC (GT)

AD: cạnh chung

BD = CD (vì D là trung điểm BC)

=> tam giác ABD = tam giác ACD (c.c.c)

/ Ta có: tam giác ABD = tam giác ACD (câu a)

=> góc ADB = góc ADC (2 góc tương ứng)

Mà góc ADB + góc ADC = 1800 (kề bù)

=> góc ADB = góc ADC = 1800 : 2 = 900

Vậy AD vuông góc với BC (đpcm)

a: Xét ΔABD và ΔACD có 
AB=AC

AD chung

BD=CD
Do đó: ΔABD=ΔACD

b: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là tia phân giác của góc BAC

c: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là đường cao

=>AD⊥BC

mà d//BC

nên AD⊥d

19 tháng 2 2022

a) Xét ΔΔABD và ΔΔACD có:

        AB = AC (gt)

        AD: cạnh chung

        BD = CD (D là trung điểm của BC)

⇒Δ⇒ΔABD = ΔΔACD (c.c.c)

b)b) Ta có: ΔΔABD = ΔΔACD (theo ý a)

\(\widehat{BAD}\)=\(\widehat{CAD}\)  (2gocs tương ứng )

 AD là tia phân giác của \(\widehat{BAC}\)

c) Ta có: ΔΔABD = ΔΔACD (theo ý a)

⇒ \(\widehat{ADB}\)=\(\widehat{ADC}\)(2 góc tương ứng )

mà \(\widehat{ADB}\)  +  \(\widehat{ADC}\)=18001800( 2 góc kề bù ) 

\(\widehat{ADB}\)=\(\widehat{ADC}\)= 900900

⇒ AD ⊥ BC

Lại có: d // BC (gt)   AD  d

a: Xét ΔABD và ΔACD co

AB=AC

BD=CD

AD chung

=>ΔABD=ΔACD
b: ΔABD=ΔACD

=>góc BAD=góc CAD

=>AD là phân giác của góc BAC

c: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD

d: Xét ΔDEB vuông tại E và ΔDFC vuông tại F có

DB=DC

DE=DF
=>ΔDEB=ΔDFC

16 tháng 2 2023

Vẽ hình ra em

6 tháng 1 2022

Bài 1:

undefined

Bài 2:

undefined

22 tháng 11 2023

a: Xét ΔABD và ΔACD có

AB=AC

BD=CD

AD chung

Do đó: ΔABD=ΔACD

b: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

=>AD là phân giác của \(\widehat{BAC}\)

c: ΔABD=ΔACD

=>\(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

=>AD\(\perp\)BC

a: Xét ΔABD và ΔACD có

AB=AC

AD chung

BD=CD
Do đó: ΔABD=ΔACD

b: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là đường phân giác

c: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là đường cao

=>AD⊥BC

hay AD⊥d

12 tháng 2 2022

có hình ko bạn

gianroi

9 tháng 2 2022

a. Xét tam giác  ABD và tam giác ACD

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

AD : cạnh chung

Vậy tam giác  ABD = tam giác ACD ( c.g.c )

b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao

=> AD vuông BC

CD = BC : 2 = 12 : 2 =6cm

c.áp dụng định lý pitago vào tam giác vuông ADC 

\(AC^2=AD^2+DC^2\)

\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)

d.Xét tam giác vuông BDE và tam giác vuông CDF có:

AD = CD ( gt )

góc B = góc C

Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)

=> DE = DF ( 2 cạnh tương ứng )

=> tam giác DEF cân tại D

9 tháng 2 2022

a) Tam giác ABD và tam giác ACD có:

     BD = CD (Vì D là trung điểm của BC)

     góc B = góc C

                              (vì tam giác ABC cân tại A)

     AB = AC

  Do đó: am giác ABD = tam giác ACD (c.g.c)

   Suy ra: Góc ADB = góc ADC (cặp góc t/ứng)

b) Vì góc ADB = góc ADC (cmt) mà góc ADB +  góc ADC 180 độ (2 góc kề bù)

    nên góc ADB = 180 độ / 2 = 90 độ => AD vuông góc với BC

c) Ta có : BD + CD = BC ( Vì D nằm giữa B và C)

                  mà BC = 12 cm

       => CD = 12 /2 = 6 cm

 Vì AD vuông góc với BC nên tam giác ADC vuông tại D 

   => AC2AC2 = AD2AD2 +CD2CD2 (Định lý Pytago)

    => 10^2 = AD ^ 2 + 6 ^2

   => AD^2 = 64

   => AD = 8 (cm) (vì AD > 0 )

 d) bạn c/m cho tam giác DEB = tam giác DFC (cạnh huyền - góc nhọn) nhé

       => DE = DF (cặp cạnh tương ứng) => tam giác DEF cân tại D( đn)

1 tháng 4 2020

a) Xét \(\Delta\)ABD và \(\Delta\)ACD có:

        AB = AC (gt)

        AD: cạnh chung

        BD = CD (D là trung điểm của BC)

\(\Rightarrow\Delta\)ABD = \(\Delta\)ACD (c.c.c)

b) Ta có: \(\Delta\)ABD = \(\Delta\)ACD (theo ý a)

\(\Rightarrow\widehat{BAD}\) = \(\widehat{CAD}\) (2 góc tương ứng)

\(\Rightarrow\) AD là tia phân giác của \(\widehat{BAC}\)

c) Ta có: \(\Delta\)ABD = \(\Delta\)ACD (theo ý a)

\(\Rightarrow\widehat{ADB}\) =\(\widehat{ADC}\) (2 góc tương ứng)

\(\widehat{ADB}\) + \(\widehat{ADC}\) = 18001800 (2 góc kề bù)

\(\Rightarrow\widehat{ADB}\) = \(\widehat{ADC}\) = 900900

\(\Rightarrow\) AD \(\perp\) BC

Lại có: d // BC (gt)  \(\Rightarrow\) AD \(\perp\) d

ĐS:......................

#Châu's ngốc