K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2021

\(a,\left\{{}\begin{matrix}AB=AC\\BD=DC\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABD=\Delta ACD\left(c.c.c\right)\\ b,\Delta ABD=\Delta ACD\\ \Rightarrow\widehat{BAD}=\widehat{CAD}\\ c,\Delta ABD=\Delta ACD\\ \Rightarrow\widehat{ADB}=\widehat{ADC}\\ \text{Mà }\widehat{ADB}+\widehat{ADC}=180^0\\ \Rightarrow\widehat{ADC}=\widehat{ADB}=90^0\\ \Rightarrow AD\perp BC\)

17 tháng 11 2022

a: Xét ΔDMB và ΔDMC có

MB=MC

DB=DC

DM chung

Do đó: ΔDMB=ΔDMC

b: Xét ΔBAD và ΔCAD có

AB=AC

AD chung

BD=CD

Do đó: ΔBAD=ΔCAD

c: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Vì DB=DC

nên D nằm trên đường trung trực của BC(2)

Vì MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,D,M thẳng hàng

5 tháng 11 2018

Hình chỉ mang tính chất minh họa A B C D M a,Xét △DMB và △DMC

Có DM chung

BM=MC( M là trung điểm)

BD=CD(gt)

Do đó: △DMB = △DMC(c.c.c)

b, Xét ΔABD và ΔACD

Có: AD chung

AB=AC(gt)

BD=CD(gt)

Do đó:ΔABD = ΔACD(c.c.c)

c, Có AB=AC

=> ΔABC cân tại A

Mà AM là đường trung tuyến(M là trung điểm)✳

=> AM là phân giác \(\widehat{BAC}\)(1)

Lại có \(\widehat{A_1}=\widehat{A_2}\)(ΔABD = ΔACD)

=> AD là phân giác \(\widehat{BAC}\)(2)

Từ (1);(2)=> A,D,M thẳng hàng

Từ ✳=> AM là đường cao của ΔABC

=> AD là đường cao của ΔABC

26 tháng 12 2016

A B C D E

a) Xét ΔABD và ΔACD có:

AB = AC (GT)

AD chung.

BD = CD (suy từ gt)

=> ΔABD = ΔACD (c.c.c).

b) Vì ΔABD = ΔACD nên \(\widehat{ADB}\) = \(\widehat{ADC}\) ( 2 góc t ư)

\(\widehat{ADB}\) + \(\widehat{ADC}\) = 180 độ(kề bù).

=> \(\widehat{ADB}\) = \(\widehat{ADC}\) = 90 độ.

Do đó AD \(\perp\) BC.

c) Xét ΔADB và ΔEDC có:

AD = ED (gt)

\(\widehat{ADB}\) = \(\widehat{EDC}\) (đối đỉnh)

DB = DC (suy từ gt)

=> ΔADB = ΔEDC (c.g.c)

=> \(\widehat{BAD}\) = \(\widehat{CED}\) ( 2 góc t ư )

mà 2 góc này ở vị trí so le trong nên CE // AB.

26 tháng 12 2016

Ta có hình vẽ sau:

B A C D E

a/ Xét ΔABD và ΔACD có:

AD: Cạnh chung

AB = AC (gt)

BD = CD (gt)

=> ΔABD = ΔACD (c - c - c)(đpcm)

b/ Vì ΔABD = ΔACD (ý a)

=> \(\widehat{ADB}=\widehat{ADC}\) (2 cạnh tương ứng)

\(\widehat{ADB}+\widehat{ADC}=180^o\) (kề bù)

=> \(\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)

=> \(AD\perp BC\left(đpcm\right)\)

c/ Xét ΔABD và ΔECD có:

AD = ED (gt)

\(\widehat{ADB}=\widehat{EDC}\) (đối đỉnh)

BD = CD (gt)

=> ΔABD = ΔECD (c - g - c)

=> \(\widehat{BAD}=\widehat{CED}\) (2 góc tương ứng)

mà 2 góc này lại ở vị trí so le trong nên:

=> CE // AB (đpcm)

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD = DEb )...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
6 tháng 1 2022

Bài 1:

undefined

Bài 2:

undefined

31 tháng 1 2018

Hình vẽ:

A B C E F D

Giải:

a) Xét tam giác ABD và tam giác ACD, có:

\(AB=AC\) (Tam giác ABC cân tại A)

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A)

\(BD=CD\) ( D là trung điểm của BC)

\(\Leftrightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)

b) Ta có: \(\Delta ABD=\Delta ACD\) (câu a)

\(\Rightarrow\widehat{ADB}=\widehat{ADC}\) (Hai cạnh tương ứng)

Lại có: \(\widehat{ADB}+\widehat{ADC}=180^0\) (Hai góc kề bù)

\(\Leftrightarrow\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

\(\Leftrightarrow AD\perp BC\)

c) Có D là trung điểm của BC

\(\Leftrightarrow BD=\dfrac{1}{2}BC=\dfrac{1}{2}.12=6\left(cm\right)\)

Lại có tam giác ABC cân tại A

\(\Leftrightarrow AC=AB=10\left(cm\right)\)

Áp dụng dịnh lý Pitago vào tam giác ABD, có:

\(AB^2=AD^2+BD^2\)

Hay \(10=AD^2+6^2\)

\(\Leftrightarrow AD^2=10^2-6^2=64\)

\(AD=\sqrt{64}=8\left(cm\right)\)

d) Xét tam giác BDE và tam giác CDF, có:

\(\widehat{BED}=\widehat{CFD}=90^0\)

\(BD=CD\) (D là trung điểm của BC)

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A) \(\Rightarrow\Delta BDE=\Delta CDF\left(ch-gn\right)\) \(\Rightarrow DE=DF\) (Hai cạnh tương ứng) \(\Rightarrow\Delta DEF\) cân tại D Vậy ...
31 tháng 1 2018

Giải:

a)Xét Δ ABD và Δ ACD có:

AD là cạnh chung

AB=AC (vì Δ ABC cân tại A)

BD=CD (vì D là trung điểm của BC)

Vậy: Δ ABD = Δ ACD (c.c.c)

b)Vì Δ ABD = Δ ACD (chứng minh trên)

nên: \(\widehat{ADB}=\widehat{ADC}\) (hai góc tương ứng)

mà: \(\widehat{ADB}+\widehat{ADC}=180^0\) (kề bù)

nên: \(\widehat{ADB}+\widehat{ADB}=180^0\)

\(2\widehat{ADB}=180^0\)

\(\widehat{ADB}=\dfrac{180^0}{2}\)

\(\widehat{ADB}=90^0\)

Do đó: AD⊥BC tại D
c)Ta có: BD=CD (vì D là trung điểm của BC)

Mà: BC=12cm (giả thiết)

lại có: BC=BD+CD

nên: \(BD=CD=\dfrac{BC}{2}=\dfrac{12}{2}=6cm\)

* Áp dụng định lí Pi-ta-go vào Δ ADC vuông tại D có:

\(AC^2=AD^2+CD^2\)

\(10^2=AD^2+6^2\)

\(100=AD^2+36\)

\(AD^2=100-36\)

\(AD^2=64\)

\(AD=\sqrt{64}\left(AD>0\right)\)

Vậy: AD=8(cm)

d)Xét Δ BED vuông tại E và Δ CFD cân tại F có:

\(\widehat{B}=\widehat{C}\) (vì Δ ABC cân tại A)

\(BD=CD\) (vì D là trung điểm của BC)

Vậy: Δ BED =Δ CFD ( cạnh huyền_góc nhọn)

\(\Rightarrow DE=DF\) (hai cạnh tương ứng)

Do đó: Δ DEF cân tại D

17 tháng 12 2021

a) Nối A và D lại, ta đc: ΔABD & ΔADC

Ta có: D là trung điểm BC => BD=DC

Xét ΔABD & ΔADC có:

AB=AC(gt) ; BD=DC ; AD=AD

=> ΔADB = ΔADC

17 tháng 12 2021

1a. Xét △ABD và △ACD có:

\(AB=BC\left(gt\right)\)

\(\hat{BAD}=\hat{CAD}\left(gt\right)\)

\(AD\) chung

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
 

b/ Từ a suy ra \(BD=CD\) (hai cạnh tương ứng).

 

2a. Xét △ABD và △EBD có:

\(AB=BE\left(gt\right)\)

\(\hat{ABD}=\hat{EBD}\left(gt\right)\)

\(BD\) chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
 

b/ Từ a suy ra \(\hat{DEB}=90^o\) (góc tương ứng với góc A).
 

c/ Xét △ABI và △EBI có:

\(AB=BE\left(gt\right)\)

\(\hat{ABI}=\hat{EBI}\left(do\text{ }\hat{ABD}=\hat{EBD}\right)\)

\(BI\) chung

\(\Rightarrow\Delta ABI=\Delta EBI\left(c.g.c\right)\)

\(\Rightarrow\hat{AIB}=\hat{EIB}=\dfrac{180^o}{2}=90^o\)

Vậy: \(BD\perp AE\)