K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KL
16 tháng 6 2017
Xét tam giác ADD' , có :
. C trung điểm AD ( AC = CD ; C thuộc AD )
. CC' // DD' ( // BE )
. C' thuộc AD' ( CC' cắt AD' tại C' )
Suy ra : C' là trung điểm AD'
=> AC' = C'D' ( 1 )
Xét hình thang CC'BE ( CC' // BE ) , có :
. D' là trung điểm BC'
. DD' // BE // CC' ( cmt )
. D' thuộc BC'( DD' cắt BC' tại D' )
Suy ra : D' là trung điểm BC'
=> BD' = C'D' ( 2 )
Từ ( 1 ) và ( 2 ) , cho : AC' = C'D' = D'B
23 tháng 5 2022
a: Xét ΔA'B'C' và ΔABC có
A'B'/AB=A'C'/AC=B'C'/BC
Do đó: ΔA'B'C'\(\sim\)ΔABC
b: \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{A'B'}{AB}=2\)
a) Ta có:
\(\frac{{AB'}}{{AB}} = \frac{2}{6} = \frac{1}{3}\) và \(\frac{{AC'}}{{AC}} = \frac{5}{{15}} = \frac{1}{3}\).
b) Vì \(B'E//BC\) và\(B'E\) cắt \(AC\) tại \(E\) nên theo định lí Thales ta có:
\(\frac{{AB'}}{{AB}} = \frac{{AE}}{{AC}} \Rightarrow \frac{2}{6} = \frac{{AE}}{{15}} \Rightarrow AE = \frac{{2.15}}{6} = 5cm\)
c) Ta có: \(AE = AC' = 5cm\).
d) Điểm \(E \equiv C'\) và đường thẳng \(B'C' \equiv B'E\).