K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2022

e làm a,b chung luôn nha chị

Xét tam giác ABC và tam giác A`B`C`, có:

\(\dfrac{AB}{A`B`}=\dfrac{BC}{B`C`}=2\) ( gt )

Góc A = góc A` = 90 độ

=> tam giác ABC đồng dạng tam giác A`B`C`

=>\(\dfrac{AC}{A`C`}=\dfrac{AB}{A`B`}=\dfrac{BC}{B`C`}=2\) ( tính chất 2 tam giác đồng dạng )

24 tháng 2 2022

=^= um dù sao cũm cảm ơn nhó:33

12 tháng 1 2021

Đây là định lý Ceva nhé bạn!

Giả sử AA', BB', CC' đồng quy tại O.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{A'B}{A'C}=\dfrac{S_{OA'B}}{S_{OA'C}}=\dfrac{S_{AA'B}}{S_{AA'C}}=\dfrac{S_{AA'B}-S_{OA'B}}{S_{AA'C}-S_{OA'C}}=\dfrac{S_{OAB}}{S_{OAC}}\).

Chứng minh tương tự: \(\dfrac{B'C}{B'A}=\dfrac{S_{OBC}}{S_{OBA}};\dfrac{C'A}{C'B}=\dfrac{S_{OAC}}{S_{OBC}}\).

Nhân vế với vế của các đẳng thức trên ta có đpcm.

P/s: Ngoài ra còn có các cách khác như dùng định lý Thales,..)

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

Giả sử $AB=3, AC=4, BC=5$ (cm)

Vì $3^2+4^2=5^2$ nên theo định lý Pitago đảo thì $ABC$ là tam giác vuông tại $A$

$A'B'C'$ đồng dạng với $ABC$ nên $A'B'C'$ là tam giác vuông tại $A'$

$\Rightarrow S_{A'B'C'}=\frac{A'B'.A'C'}{2}=54\Rightarrow A'B'.A'C'=108(*)$ (cm)

$ABC\sim A'B'C'\Rightarrow \frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}$

$\Leftrightarrow \frac{A'B'}{3}=\frac{B'C'}{5}=\frac{C'A'}{4}(**)$

Từ $(*); (**)$ suy ra $A'B'=9; B'C'=15; C'A'=12$ (cm)

25 tháng 1

Qua  vẽ đường thẳng song song với �� cắt ��′ tại  và cắt ��′ tại .

Khi đó 

Δ��� có �� // �′� suy ra ���′�=���′� (1)

Δ��� có �� // �′� suy ra ���′�=���′� (2)

Từ (1) và (2) ta có ���′�=���′�=���′�=��+���′�+�′�=���� (*)

Chứng minh tương tự ta cũng có:

Δ��′� có �� // �� suy ra ��′�′�=���� (3)

Δ��′� có �� // �� suy ra ��′�′�=���� (4)

Từ (3) và (4) ta có ��′�′�+��′��′=����+����=���� (**)

Từ (*) và (**) ta có ���′�=����=��′�′�+��′��′ (đpcm).

25 tháng 1

Qua  vẽ đường thẳng song song với �� cắt ��′ tại  và cắt ��′ tại .

Khi đó 

Δ��� có �� // �′� suy ra ���′�=���′� (1)

Δ��� có �� // �′� suy ra ���′�=���′� (2)

Từ (1) và (2) ta có ���′�=���′�=���′�=��+���′�+�′�=���� (*)

Chứng minh tương tự ta cũng có:

Δ��′� có �� // �� suy ra ��′�′�=���� (3)

Δ��′� có �� // �� suy ra ��′�′�=���� (4)

Từ (3) và (4) ta có ��′�′�+��′��′=����+����=���� (**)

Từ (*) và (**) ta có ���′�=����=��′�′�+��′��′ (đpcm).

27 tháng 4 2018

muốn giúp câu j

27 tháng 4 2018

câu c, câu d

1, Qua trọng tâm G của tam giác ABC, kẻ đường thẳng song song với AC, cắt AB và BC lần lượt ở D và E. Tính độ dài đoạn DE, biết AD + EC = 16cm, chu vi tam giác ABC = 75cm. 2, Cho hình thang ABCD(AB//CD). Đường thẳng song song hai đáy cắt cạnh AD tại M, cắt cạnh BC tại N sao cho MD = 3 MA. a, Tính tỉ số \(\dfrac{NB}{NC}\) b, Cho AB = 8cm, CD = 20cm. Tính MN. 3, Cho tam giác ABC> Trên các cạnh AB, AC lần lượt lấy các điểm B',...
Đọc tiếp

1, Qua trọng tâm G của tam giác ABC, kẻ đường thẳng song song với AC, cắt AB và BC lần lượt ở D và E. Tính độ dài đoạn DE, biết AD + EC = 16cm, chu vi tam giác ABC = 75cm.

2, Cho hình thang ABCD(AB//CD). Đường thẳng song song hai đáy cắt cạnh AD tại M, cắt cạnh BC tại N sao cho MD = 3 MA.

a, Tính tỉ số \(\dfrac{NB}{NC}\)

b, Cho AB = 8cm, CD = 20cm. Tính MN.

3, Cho tam giác ABC> Trên các cạnh AB, AC lần lượt lấy các điểm B', C' sao cho \(\dfrac{AB'}{AB}=\dfrac{AC'}{AC}.\) Qua B' vẽ đường thẳng a song song với Bc, cắt cạnh AC tại C''.

a, So sánh độ dài các đoạn thẳng AC' và AC''.

b, Chứng minh B'C' // BC.

4, Cho tam gác ABC. Gọi D là điểm chia cạnh AB thàng hai đoạn thẳng có độ dài AD = 13,5cm; DB = 4,5cm. Tính tỉ số các khoảng cách từ các điểm D và B đến cạnh AC.

MỘI NGƯỜI KẺ HÌNH GIÚP MK LUÔN NHÁ !!!

MƠN ẠK

0