Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
mình nha
a/Ta có AB//CI nên \(\frac{AB}{CI}=\frac{BD}{CD}\)(1)
Lại có AD là ph/giác nên \(\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{AB}{CI}=\frac{AB}{AC}\Rightarrow AC=CI\)
Mà AKI là tgiac vuông (2 phân giác trong và ngoài \(AE\perp AD\))
Suy ra AC là đ/ trung tuyến suy ra CK=CI
b/Tương tự
a) Do AB//CI nên
\(\frac{AB}{CI}=\frac{BD}{CD}\)(1)
Do AB//CK nên
\(\frac{AB}{CK}=\frac{EB}{EC}\)(2)
AD là phân giác trong của tam giác ABC nên
\(\frac{BD}{CD}=\frac{AB}{AC}\)(3)
AD là phân giác ngoài của tam giác ABC nên
\(\frac{EB}{EC}=\frac{AB}{AC}\)(4)
Từ (1),(2),(3),(4) ta có \(\frac{AB}{CI}=\frac{AB}{CK}\)suy ra CI=CK nên C là tđ IK
b) chứng minh tương tự
Hình vẽ:
a: Xét tứ giác AC'A'C có góc AC'C=góc AA'C=90 độ
nên AC'A'C là tứ giác nội tiếp
=>góc BC'A'=góc BCA
=>ΔBC'A' đồng dạng với ΔBCA
=>BC'/BC=BA'/BA
hay \(BC'\cdot BA=BA'\cdot BC\)
Xét tứ giác AB'A'B có góc AB'B=góc AA'B=90 độ
nên AB'A'B là tứ giác nội tiếp
=>góc CB'A'=góc CBA
=>ΔCB'A' đồng dạng với ΔCBA
=>CB'/CB=CA'/CA
hay \(CB'\cdot CA+CA'\cdot CB\)
=>\(BC'\cdot BA+CB'\cdot CA=BC^2\)
b: ΔAHM đồng dạng với ΔCDH
nên HM/HD=AH/CD(3)
ΔAHN đồng dạng với ΔBDH
nên AH/BD=HN/DH
=>AH/CD=HN/DH(4)
Từ (3) và (4) suy ra HM=HN
=>H là trung điểm của MN
a, Xét tứ giác MNPB có:
MN//PB (Vì MN//BC và P ϵ BC)
MB//NP (Vì AB//NP và M ϵ AB)
=> Tứ giác MNPB là hbh
b, Ta có:
M là trung điểm AB
MN//BC
=> MN là đường trung bình của tam giác ABC
=> N là trung điểm AC, MN=BC/2 và MN//BC
Xét 2 tam giác AMN và NPC có
AM=NP (Vì AM=BM, BM=NP)
AN=NC
MN=PC ( Vì MN=BC/2, MN=BP)
=> Tam giác AMN = Tam giác NPC (c.c.c)