Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) vẽ hình wá đơn giản nên bạn tự vẽ nhé!
B)
Trong tứ giác AHCK có:
AI=IC ; HI=IK
=> Tứ giác AHCK là hình bình hành
Mà H_|_
=> TỨ GIÁC AHCK LÀ HÌNH CHỮ NHẬT (đpcm)
C) Ta có: AHCK là hình chữ nhật (cmt)
=> AK=HC (1) và AK//HC (2)
Mà (1) + HB => AK=HB (3)
Và (2) + H € BC => AK//BH (4)
Từ (3), (4) => AK=HB và AK//BH
=> ABHK là hình bình hành (đpcm)
C) mình đang suy nghĩ
Mà bạn này, bạn up đè có thiếu k, tại mình thấy hơi thừa vài chỗ :")
À mà cách diễn đạt bài làm của mình hơi khó hiểu, nếu wá khó bạn cứ nhắn tin cho mình :-D
vận tốc trung bình của người đó trên quãng đường AB là:
(40+60):2=50(km/h)
đáp số: 50km/ giờ
Giả sử quãng đường AB dài 480 km thì vận tốc trung bình trên cả quãng đường đi và về là:
480*2:(60+40)=96(km/giờ)
a: Xét tứ giác APMN có
góc APM=góc ANM=góc PAN=90 độ
nên APMN là hình chữ nhật
b: Xét tứ giác AMIQ có
N là trung điểm chung của AI và MQ
MQ vuông góc với AI
Do đó: AMIQ là hình thoi
a: Ta có: B và E đối xứng nhau qua AC
nên AC là đường trung trực của BE
=>AB=AE và CB=CE
Xét ΔCBA và ΔCEA có
CB=CE
AB=AE
CA chung
Do đó: ΔCBA=ΔCEA
SUy ra: \(\widehat{CBA}=\widehat{CEA}=90^0\)
hay ΔAEC vuông tại E
b: Xéttứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
mà \(\widehat{CBA}=90^0\)
nên ABCD là hình chữ nhật
d: Gọi K là giao điểm của BE và AC
Xét ΔBDE có
M là trung điểm của BD
K là trung điểm của BE
Do đó: MK là đường trung bình
=>MK//DE
Ta có: ABCD là hình chữ nhật
nên AD=BC
mà BC=CE
nên AD=CE
Xét tứ giác AEDC có DE//AC
nên AEDC là hình thang
mà AD=CE
nên AEDC là hình thang cân
a) Xét tứ giác AMDN có 3 góc vuông => AMDN là hình chữ nhật
b) Vì AD là đường trung tuyến của tam giác vuông ABC nên AD = DC
Tam giác NAD = tam giác NCD (CH - CGV) => AN = NC
Xét tứ giác ADCK có AC vuông góc với DK và AN = NC; DN = NK
=> ADCK là hình thoi
c) Để ADCK là hình vuông thì góc ADC = 90o
=> AD vừa là đường trung tuyến, vừa là đường cao của tam giác vuông ABC
=> Tam giác ABC vuông cân tại A
a: Xét tứ giac AMBK có
I là trung điểm của AB
I làtrung điểm của MK
Do đó:AMBK là hình bình hành
mà MA=MB
nên AMBK là hình thoi
b: Xét tứ giác AKMC có
AK//MC
AC//MK
Do đó: AKMC là hình bình hành
c: Để AMBK là hình vuông thì AM\(\perp\)BM
=>ΔABC cân tại A
=>AB=AC