K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

B A C E F D

a.Xét \(\Delta ABD\)\(\Delta EBD\) có:

\(\widehat{ABD}=\widehat{EBD}\) ( giả thiết)

BD - cạnh chung

\(\widehat{BAD}=\widehat{BED}\) ( = 90 do)

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.h-g.n\right)\)

\(\Rightarrow AB=EB\) ( 2 cạnh tương ứng)

b.Xét \(\Delta ADF\)\(\Delta EDC\) có:

\(\widehat{ADF}=\widehat{EDC}\) ( đối đỉnh)

AD = ED ( vi \(\Delta ABD=\Delta EBD\) )

\(\widehat{DAF}=\widehat{DEC}\) ( = 90 do)

\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\)

=> DF = DC ( 2 cạnh tương ứng)

=> \(\Delta FDC\) cân tại D

c.Ta có:AB = EB (cm a)

=> \(\Delta ABE\) cân tại B

Mà BD là đường phân giác \(\widehat{ABE}\)

=> BD là đường trung trực của \(\Delta ABE\)

=> \(BD\perp AE\) (1)

Lại có: \(\Delta ADF=\Delta EDC\) ( cm b )

=>AF = EC ( 2 cạnh tương ứng)

Mà AB = BE => AB+AF=BE+EC

=> BF = BC. => \(\Delta BFC\) cân tại B

Mà BD là đường phân giác \(\widehat{ABC}\) hay \(\widehat{FBC}\)

=> BD là đường trung trực của \(\Delta FBC\)

=> \(BD\perp FC\) (2)

Từ (1),(2) => AE// FC ( dpcm)

17 tháng 4 2017

tra loi jup minh cau hoi

a: Ta có: ΔBAC cân tại A

mà AD là phân giác

nên AD là đường cao

b: góc FAC=(180 độ-góc BAC)/2

góc ACB=(180 độ-góc BAC)/2

Do đó: góc FAC=góc ACB

=>AF//BC

c: Xét ΔECB có

CA là đường trung tuyến

CA=EB/2

DO đó: ΔECB vuông tại C

=>CE//AD
Xét tứ giác FDAE có

FD//AE

EF//AD

Do đó: FDAE là hình bình hành

Suy ra: FE=AD

22 tháng 11 2015

 câu a/

xét tam giác ABH và CAK có:

góc AHB=góc AEC=90;

AB=AC;

góc ABH=góc CAE﴾cùng phụ với góc BAE﴿

=> tam giác ABH=CAK﴾cạnh huyền‐ góc nhọn﴿

=>BH=AK c

âu b/ tam giác ABC vuông cân

; M là trung điểm của BC

=>AM=BM=CM

xét tam giác BMH và AMK

có góc MBH=MAK﴾cùng phụ với góc BEH﴿

; BH=AK﴾cmt﴿; BM=AM﴾cmt﴿

=>tam giác bằng nhau

Câu c/

theo câu b/

=> MH=MK﴾2 cạnh tương ứng﴿﴾1﴿

Xét tam giác AHM và CEM có

AH=CE﴾tam giác ABH=CEK﴿;

MH=MK﴾cmt﴿;

AM=MC﴾cmt﴿

=> tam giác bằng nhau

=>góc AMH= góc CMK mà góc AMH+góc EMH=90

=>góc HME+gócCMK=90 =>góc HMK=90﴾2﴿

từ ﴾1﴿﴾2﴿

=> tam giác MHK vuông cân

17 tháng 6 2017

A B C D F 1 2 1 3

a, Xét \(\Delta ABD;\Delta EBD\) có:

\(\widehat{B_1}=\widehat{B_2}\) (do BD là p/g góc B)

BD chung

\(\widehat{BAD}=\widehat{BED}=90^0\)

\(\Rightarrow\Delta BAD=\Delta BED\left(CH-GN\right)\)

=> AB=EB => B nằm trên trung trực của AE

AD=ED => D nằm trên trung trực của AE

=> BD là trung trực của AE.

Vậy BD là trung trực của AE.

b, Xét \(\Delta ADF;\Delta EDC\) có:

\(\widehat{DAF}=\widehat{DEC}=90^0\)

AD=ED

\(\widehat{D_1}=\widehat{D_3}\) (đối đỉnh)

\(\Rightarrow\Delta ADF=\Delta EDC\left(g-c-g\right)\Rightarrow DF=DC\)

Vậy DF=DC

c, Ta có:

\(CA\perp BF\) => CA là đường cao xuất phát từ C của \(\Delta BCF\)

\(FE\perp BC\) => FE là đường cao xuất phát từ F của \(\Delta BCF\)

Mà D là giao điểm của CA và FE => D là trực tâm của tam giác BCF

=> \(BD\perp FC\). (1)

Mà BD là trung trực của AE \(\Rightarrow BD\perp AE\) (2)

Từ (1) và (2) => AE//FC

Vậy AE//FC

14 tháng 12 2015

ai ủng hộ 6 **** đi , please

14 tháng 12 2015

**** cho tôi với please