Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:
Gọi F là trung điểm AC, theo đề bài có ngay: BF là đường trung bình nên BF // EC và \(BF=\frac{1}{2}EC\)(1)
Ta lại dễ chứng minh \(\Delta\)BDC = \(\Delta\)CFB do đó BF = CD. (2)
Từ (1) và (2) suy ra đpcm.
Hinh nhu de sai thi phai ban ah.Ban thu coi lai coi xem co dieu kien nao cua tam giac ABC khong ?
a/
Xét tg BCD và tg CBD có
BD=CE (gt)
\(\widehat{ABC}=\widehat{ACB}\) (góc ở đáy tg cân ABC)
BC chung
=> tg BCD = tg CBD (c.g.c) => CD=BE (đpcm)
b/
tg BCD = tg CBD (cmt) \(\Rightarrow\widehat{IBC}=\widehat{ICB}\)
=> tg IBC cân tại I => IB=IC
Xét tg ABI và tg ACI có
IB=IC (cmt)
AI chung
AB=AC (cạnh bên tg cân ABC)
=> tg ABI = tg ACI (c.c.c) \(\Rightarrow\widehat{BAI}=\widehat{CAI}\)
=> AI là phân giác \(\widehat{A}\)
=> AI là trung trực của BC (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường trung trực)
c/
Ta có
AD=AB-BD
AE=AC-CE
Mà AB=AC; BD=CE
=> AD=AE
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\) => DE//BC (Talet đảo trong tam giác)
d/
Từ E đựng đường thẳng // với AB cắt BC tại G
ta có
\(\widehat{EGC}=\widehat{ABC}\) (góc đồng vị)
Mà \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{EGC}=\widehat{ACB}\) => tg EGC cân tại E => GE=CE (cạnh bên tg cân)
Mà BD=CE (gt)
=> GE=BD mà BD=BF => GE=BF
Ta có
GE//AB => GE//BF
=> BEGF là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hình bình hành)
=> KE=KF (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> K là trung điểm của EF
Gọi F là trung điểm của AC
Xét tam giác \(ADC\)có:
B là trung điểm của AD (gt )
F là trung điểm của AC (h.vẽ )
\(\Rightarrow BF\)là đường trung bình của tam giác \(ADC\)
\(\Rightarrow BF=\frac{1}{2}DC\left(tc\right)\)(1)
Vì tam giác \(ÂBC\)cân tại A (gt)
\(\Rightarrow\widehat{B}=\widehat{C}\left(tc\right)\)
Ta có: \(\hept{\begin{cases}AB=AC\left(gt\right)\\EB=\frac{1}{2}AB;FC=\frac{1}{2}AC\end{cases}}\)
\(\Rightarrow EB=FC\)
Xét \(\Delta BEC\)và \(\Delta CFB\)có:
\(\hept{\begin{cases}BCchung\\EB=FC\left(cmt\right)\\\widehat{B}=\widehat{C}\end{cases}}\Rightarrow\Delta BEC=\Delta CFB\left(c-g-c\right)\)
\(\Rightarrow BF=EC\)( 2 cạnh tương ứng ) (2)
Từ (1) và (2) \(\Rightarrow EC=\frac{1}{2}CD\)
vô trang cá nhân của mk ạ