K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 10 2021

Lời giải:

Xét tam giác $NBC$ và $MCB$ có:
$\widehat{NBC}=\widehat{MCB}$ (do tam giác $ABC$ cân tại $A$)

$BC$ chung

$NB = \frac{AB}{2}=\frac{AC}{2}=MC$

$\Rightarrow \triangle NBC=\triangle MCB$ (c.g.c)

$\Rightarrow NC=MB(1)$

Tam giác $ADC$ có $B, M$ lần lượt là trung điểm $AD, AC$ nên $MB$ là đường trung bình ứng với cạnh $DC$

$\Rightarrow MB=\frac{1}{2}CD(2)$

Từ $(1); (2)\Rightarrow NC=\frac{1}{2}CD$

$\Rightarrow CD=2NC$

AH
Akai Haruma
Giáo viên
5 tháng 10 2021

Hình vẽ:

- Trên tia đối của MC lấy điểm E sao cho ME = MC.
- Tứ giác AEBC có hai đường chéo AB và EC cắt nhau tại trung điểm M mỗi đường => AEBC là hình bình hành => EB // AC; EB = AC.
- Có AB = AC (do tam giác ABC cân tại A); AB = BD (theo giả thiết); lại có EB = AC (chứng minh trên) => EB = BD. 
- Có góc ABC + góc DBC = 180 độ (Hai góc kề bù). Mà góc ABC = góc ACB (do tam giác ABC cân tại A) => góc DBC + góc ACB = 180 độ. (1)
- Có BE // AC (chứng minh trên) => góc EBC + góc ACB = 180 độ (Hai góc trong cùng phía). (2)
Từ (1) và (2) => góc DBC = góc EBC ( = 180 độ - góc ACB).
- Xét tam giác CBE và tam giác CBD có:
CB là cạnh chung
góc EBC = góc DBC (chứng minh trên)
EB = BD (chứng minh trên)
=> tam giác CBE = tam giác CDB (c.g.c) => CE = CD (Hai cạnh tương ứng). Mà CE = 2CM (cách vẽ) => CD = 2CM.
Vậy CE = 2CM.

a: ΔAHB vuông tại H 

=>AH<AB

ΔAHC vuông tại H

=>AH<AC

=>AH+AH<AB+AC

=>2AH<AB+AC

=>\(AH< \dfrac{1}{2}\left(AB+AC\right)\)

b: Xét ΔABC có

BM,CN là trung tuyến

BM cắt CN tại G

=>G là trọng tâm

=>BG=2GM và CG=2GN

=>BG=GE và CG=GF

=>G là trung điểm của BE và G là trung điểm của CF

Xét tứ giác BFEC có

G là trung điểm chung của BE và CF

=>BFEC là hình bình hành

=>EF=BC

a) Xét ΔABM và ΔCDM có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD(gt)

Do đó: ΔABM=ΔCDM(c-g-c)

b) Ta có: ΔABM=ΔCDM(cmt)

nên \(\widehat{ABM}=\widehat{CDM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{CDM}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)

c) Xét ΔDBN có 

M là trung điểm của BD(gt)

C là trung điểm của DN(gt)

Do đó: MC là đường trung bình của ΔDBN(Định nghĩa đường trung bình của tam giác)

Suy ra: MC//BN(Định lí 2 đường trung bình của tam giác)

hay BN//AC(đpcm)

a: Sửa đề: ΔABC cân tại A

Xét ΔABM và ΔACN có

AB=AC

góc BAM chung

AM=AN

=>ΔABM=ΔACN

=>BM=CN

Xét ΔACB có

BM,Cn là trung tuyến

BM cắt CN tại G

=>G là trọng tâm

=>BG=2/3BM và CG=2/3CN

mà BM=CN

nên BG=CG

b: BG=2/3BM

=>BG=2GM

=>BG=GD

=>G là trung điểm của BD và BD=2BG

CG=2/3CN

=>CG=2GN

=>CG=GE

=>G là trung điểm của CE và CE=2CG

CE=2CG

BD=2BG

mà CG=BG

nên CE=BD

Xét tứ giác BCDE có

G là trung điểm chung của BD và CE

CE=BD

=>BCDE là hình chữ nhật

6 tháng 9 2019

Nhìn bên phải, bấm vô thống kê hỏi đáp ạ, VÀO TRANG CÁ NHÂN CỦA E Em bức xúc lắm anh chị ạ, xl mấy anh chị vì đã gây rối Thiệt tình là ko chấp nhận nổi con nít ms 2k6 mà đã là vk là ck r ạ, bày đặt yêu xa, chưa lên đại học Đây là \'tội nhân\' https://olm.vn/thanhvien/nhu140826 và https://olm.vn/thanhvien/trungkienhy79

a: ta có: GN và GQ là hai tia đối nhau

=>G nằm giữa N và Q

mà GN=GQ

nên G là trung điểm của NQ

Ta có: GP và GM là hai tia đối nhau

=>G nằm giữa P và M

mà GP=GM

nên G là trung điểm của PM

Xét tứ giác MNPQ có

G là trung điểm chung của MP và NQ

=>MNPQ là hình bình hành

b: Ta có: ΔABC cân tại A

=>AB=AC(1)

Ta có: M là trung điểm của AC

=>\(AM=CM=\dfrac{AC}{2}\left(2\right)\)

Ta có: N là trung điểm của AB

=>\(AN=BN=\dfrac{AB}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra AM=CM=AN=BN

Xét ΔAMB và ΔANC có

AM=AN

\(\widehat{BAM}\) chung

AB=AC

Do đó: ΔAMB=ΔANC

=>BM=CN

Xét ΔABC có

BM,CN là các đường trung tuyến

BM cắt CN tại G

Do đó: G là trọng tâm của ΔABC

=>\(MG=\dfrac{1}{3}BM;NG=\dfrac{1}{3}CN\)

mà BM=CN

nên MG=NG

G là trung điểm của QN

nên QN=2NG

G là trung điểm của MP

nên MP=2MQ

Ta có: MG=NG

mà QN=2NG và MP=2MQ

nên QN=MP

Hình bình hành MNPQ có NQ=MP

nên MNPQ là hình chữ nhật