Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do tam giác \(ABC\) cân tại A nên:
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\) và \(AB=AC\)
Xét \(\Delta BEC\) vuông tại E và \(\Delta CFB\) vuông tại F ta có:
\(\widehat{ECB}=\widehat{FBC}\) (cmt)
Cạnh BC chung
\(\Rightarrow\Delta BEC=\Delta CFB\) (cạnh huyền, góc nhọn)
b) Do \(\Delta BEC=\Delta CFB\) (cmt) \(\Rightarrow EB=FC\) (hai cạnh tương ứng)
Ta lại có: \(AB=AC\)
\(\Rightarrow AB-FB=AC-EC\) hay \(AF=AE\)
Xét \(\Delta AHF\) vuông tại F và \(\Delta AHE\) vuông tại E ta có:
\(AF=AE\left(cmt\right)\)
Cạnh AH chung
\(\Rightarrow\Delta AHF=\Delta AHE\) (cạnh huyền, cạnh góc vuông)
a) Xét ΔBFC vuông tại F và ΔCEB vuông tại E có
BC chung
\(\widehat{FBC}=\widehat{ECB}\)(hai góc ở đáy của ΔBAC cân tại A)
Do đó: ΔBFC=ΔCEB(cạnh huyền-góc nhọn)
Hình bạn tự vẽ nhé !
a) Vì \(BD;CE\)là hai đường cao mà \(BD;CE\)cắt nhau tại \(H\)
\(\Rightarrow H\)là trực tâm của \(\Delta ABC\)
\(\Rightarrow AH\)là đường cao thứ ba mà \(\Delta ABC\left(AB=AC\right)\)nên \(AH\)đồng thời là tia phân giác của \(\widehat{BAC}\)(1)
b) Xét \(\Delta BEC;\Delta CDB\)có :
\(\widehat{BEC}=\widehat{CDB}=90^o\left(gt\right)\)
\(\widehat{CBE}=\widehat{BCD}\)(vì tam giác ABC cân A)\(\)
\(BC\)cạnh huyền chung
Từ 3 điều trên \(\Rightarrow\Delta BEC=\Delta CDB\left(CH-GN\right)\)
c) Vì \(M\)là trung điểm của \(BC\)\(\Rightarrow BM=CM\)\(\Rightarrow AM\)là đường trung tuyến đồng thời là đường phân
giác của \(\widehat{BAC}\)(2)
Từ (1) và (2)\(\Rightarrow AH;AM\)là tia phân giác của \(\widehat{BAC}\)\(\Rightarrow A;H;M\)thẳng hàng
k cho mình nhé !
a: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
CB chung
\(\widehat{FBC}=\widehat{ECB}\)(ΔABC cân tại A)
Do đó: ΔFBC=ΔECB
b:
Ta có;ΔFBC=ΔECB
=>EB=FC
Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
AB=AC
BE=CF
Do đó: ΔABE=ΔACF
c: Ta có: ΔABE=ΔACF
=>AE=AF
Xét ΔABC có \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
nên EF//CB
d: Sửa đề: K là trung điểm của BC, H là giao điểm của BE và CF
Ta có: ΔFBC=ΔECB
=>\(\widehat{FCB}=\widehat{EBC}\)
=>\(\widehat{HBC}=\widehat{HCB}\)
=>ΔHBC cân tại H
=>HB=HC
=>H nằm trên đường trung trực của BC(1)
ta có: KB=KC
=>K nằm trên đường trung trực của BC(2)
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,H,K thẳng hàng
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
Xét ΔBDC vuông tại D và ΔCEB vuông tại E có
BC chung
BD=CE(ΔABD=ΔACE)
Do đó: ΔBDC=ΔCEB(cạnh huyền-cạnh góc vuông)
Đưa đề kỹ, đàng hoàng vào BEC với CEB là 1 tam giác mà. Phải là BEC với CFB chứ: )
Giải:
a
Tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\) và AB = AC
Xét tg BEC vuông tại E và tg CFB vuông tại F có:
\(\widehat{ECB}=\widehat{FBC}\left(cmt\right)\)
BC chung
=> ΔBEC = ΔCFB (cạnh huyền - góc nhọn)
b
Có: EC = FB (ΔBEC = ΔCFB)
Mà AB = AC nên AB - FB = AC - EC hay AF = AE
Xét ΔAHF vuông tại F và ΔAHE vuông tại E có:
AF = AE (cmt)
AH chung
=> ΔAHF = ΔAHE (cạnh huyền - góc nhọn)