Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ΔABC cân tại A(gt)
mà AE là đường trung tuyến ứng với cạnh BC(gt)
nên AE là đường cao ứng với cạnh BC(Định lí tam giác cân)
Xét tứ giác ABED có
\(\widehat{AEB}=\widehat{ADB}\left(=90^0\right)\)
nên ABED là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay A,B,E,D cùng thuộc (O)
b) Xét tứ giác HDCE có
\(\widehat{HEC}+\widehat{HDC}=180^0\)
nên HDCE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Tâm I của đường tròn ngoại tiếp tứ giác HDCE là trung điểm của HC
a, Xét ΔABH và ΔAHD có
Góc A chung
Góc ADH=Góc AHB=90°
=> ΔABH ~ΔAHD(g.g)
=> AH/AB=AD/AH
=> AB.AD=AH²(1)
Xét ΔAEH và ΔAHC có:
Góc A chung
Góc AEH = góc AHC
=>ΔAEH~ΔAHC(g.g)
=> AE/AH=AH/AC
=>AE.AC=AH²(2)
Từ (1);(2) => AD.AB=AE.AC(đpcm)
b, vì ΔABC vuông tại A có AI là trung tuyến ứng với cạnh huyền=> BI=IC=AI
=> ΔAIC cân tại I
=>góc IAC =góc ICA
Ta cũng có ΔBIA cân tại I =>góc IBA=góc BAI
Mà góc BAI =góc AED(cùng phụ)
=> góc IBA=góc AED
Mà ABI+góc ACI= 90°
=> gócAED + góc IAC=90°
=> DEvuông góc vs AI
c,
mình làm câu c,d nek bạn
c, ta có\(\Delta\)HEC vuông tại E( vì E là hình chiếu của H nên Góc E=90 độ)
=> EN là đường trung tuyến ứng vs cạnh huyền
=> EN=NH=NC( vì N là trung điểm của HC)
=> \(\Delta\)ENC cân tại N(NE=NC cmt)
=> góc NEC=góc NCE(hai góc đáy) (1)
chứng minh tương tự trong \(\Delta\)BMD cân tại M
=> góc DBM=góc MDB(2)
ta có \(\Delta\)ABC vuông tại A nên góc DBM+góc NCE=90 độ
=>góc MDB+ góc NEC(vì (1);(2)) (3)
và \(\Delta\)\(\Delta\)
DAE vuông tại A nên góc ADE+góc AED=90 độ (4)
từ (3);(4)=>góc BDM+góc ADE=90 độ
=> góc MDH+góc HDE=90 độ ( 180 độ - (MDH+HDE))
=> DM\(\perp\) DE (*)
và góc DEA+ góc NEC=90 độ
=> góc HDE+góc HEN= 90 độ
=> DE\(\perp\) EN (**)
từ (*); (**)=> MDEN là hình thang (DM // EN vì cùng \(\perp\)vs DE)
d, Ta có DHEA là hình chữ nhật (góc D= góc H =Góc E=90 độ)
=> OH=OA=OD=OE (t/c đường chéo hcn)
=> OH=OA=HA/2
ta có HM+HN=BM+NC(vì BM=MH; NH=NC)
=> MH+HN=BC/2=>MN=1/2 BC
diện tích \(\Delta\)ABC =1/2. AH. BC
diện tích \(\Delta\)MON=1/2.OH.MN=1/2.1/2AH.1/2BC
Vậy (S\(\Delta\) MON)/(S\(\Delta\)ABC)=(1/2.AH.BC)/(1/8 AH.BC)
=4
Mình nghĩ là làm như vậy, có gì bạn góp ý nha
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
Trên tia đối của KG lấy điểm F sao cho KG=KF.
Ta có: \(\Delta\)ABC đều => ^A=600. Xét \(\Delta\)ADE có: ^A=600, AD=AE
=> \(\Delta\)ADE đều. Mà G là trọng tâm của \(\Delta\)ADE
=> G cũng là giao của 3 đường trung trực trong \(\Delta\)ABC
=> DG=AG (T/c đường trung trực) (1)
Xét \(\Delta\)GDK và \(\Delta\)FCK:
KD=KC
^DKG=^CKF => \(\Delta\)GDK=\(\Delta\)FCK (c.g.c)
KG=KF
=> DG=CF (2 cạnh tương ứng). (2)
Từ (1) và (2) => AG=CF.
Cũng suy ra đc: ^GDK=^FCK (2 góc tương ứng) => ^GDE+^EDK=^FCB+^BCK
Lại có: ED//BC (Vì \(\Delta\)ADE đều) => ^EDK=^BCK (So le trong)
=> ^GDE=^FCB (Bớt 2 vế cho ^EDK, ^BCK) (3)
Xét \(\Delta\)ADE: Đều, G trọng tâm => DG cũng là phân giác ^ADE
=> ^GDE=^ADE/2=300.
Tương tự tính được: ^GAD=300 => ^GDE=^GAD hay ^GDE=^GAB (4)
Từ (3) và (4) => ^GAB=^FCB
Xét \(\Delta\)AGB và \(\Delta\)CFB có:
AB=CB
^GAB=^CFB => \(\Delta\)AGB=\(\Delta\)CFB (c.g.c)
AG=CF
=> GB=FB (2 cạnh tương ứng) (5).
=> ^ABG=^CBF (2 góc tương ứng). Lại có:
^ABG+^GBC=^ABC=600. Thay ^ABG=^CBF ta thu được:
^CBF+^GBC=600 => ^GBF=600 (6)
Từ (5) và (6) => \(\Delta\)GBF là tam giác đều. => ^BGF=600 hay ^BGK=600
K là trung điểm của GF => BK là phân giác ^GBF => ^GBK= ^GBF/2=300
Xét \(\Delta\)BGK: ^BGK=600, ^GBK=300 => ^BKG=900.
ĐS: ^GBK=300, ^BGK=600, ^BKG=900.
*Xong*