K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

Ta có : 212 + 282 = 1225

mà 352 = 1225 

=> 212 + 282 = 352

=> tam giác ABC vuông ( ĐL Py-ta-go đảo )

17 tháng 9 2018

a) Ta có \(AB^2+AC^2=21^2+28^2=1225\)

mà \(BC^2=35^2=1225\)

Do đó \(AB^2+AC^2=BC^2\)

Do đó tam giác ABC vuông tại A ( Py-ta-go đảo )

b) Ta có \(sinb=\frac{28}{35}=\frac{4}{5}\)

\(sinc=\frac{21}{35}=\frac{3}{5}\)

12 tháng 7 2019

Ta có: sinB = AC/BC = 28/35 = 0,8

sinC = AB/BC = 21/35 = 0,6

9 tháng 10 2016

a. Ta có: AB2 + AC2 = 212 + 282 = 1225

          BC2 = 352 = 1225

=> BC2 = AB2 + AC2

=> Tam giác ABC là tam giác vuông (Định lý Pytago đảo)

Diện tích tam giác ABC  

\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.21.28=294\left(cm^2\right)\) 

b. \(sinB=\frac{AC}{BC}=\frac{28}{35}=\frac{4}{5}\)

    \(sinC=\frac{AB}{BC}=\frac{21}{35}=\frac{3}{5}\) 

c. Ta có: \(\frac{BD}{DC}=\frac{AB}{AC}=\frac{21}{28}=\frac{3}{4}\)\(\)

=> 4BD = 3DC

<=> 4BD = 3(BC - BD)

<=> 7BD = 3BC

<=> 7BD = 3 . 35

=> BD = 15 (cm)

=> DC = 20 (cm)

26 tháng 3 2020

tại sao BD bằng 15 vậy

Bạn có thể giải thích cho mình hông

7 tháng 6 2019

Ta có:

 

A B 2 = 21 2 = 441 A C 2 = 28 2 = 784 B C 2 = 35 2 = 1225

 

Vì A B 2 + A C 2  = 441 + 784 = 1225 = B C 2  nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)

1 tháng 4 2018

a,Ta có AB2+ AC2=212+282 = 1225

Lại có BC2 = 352 = 1225

=> AB2+AC2=BC2 ( Đinh lí py ta go đảo )

=> tam giác ABC là tam giác vuông

b,Ta có sin B = \(\dfrac{AC}{BC}=\dfrac{28}{35}=0,8\)

sin C = \(\dfrac{AB}{BC}=\dfrac{21}{35}=0,6\)

Kẻ AH vuông góc BC

Xét ΔAHB vuông tại H có sin B=AH/AB

=>AH=c*sin B

Xét ΔAHC vuông tại H có sin C=AH/AC

=>AH=AC*sin C=b*sin C

=>c*sin B=b*sin C

=>c/sinC=b/sinB

Kẻ BK vuông góc AC

Xét ΔABK vuông tại K có

sin A=BK/AB

=>BK=c*sinA

Xét ΔBKC vuông tại K có 

sin C=BK/BC

=>BK/a=sin C

=>BK=a*sin C

=>c*sin A=a*sin C

=>c/sin C=a/sin A

=>a/sin A=b/sinB=c/sinC

29 tháng 9 2017

Ta có AB^2+AC^2=10^2+24^2=676

      BC^2=26^2=676

=> Tam Giác ABC vuông tại A(đpcm)

b, \(\sin B=\frac{AC}{BC}=\frac{24}{26}=\frac{12}{13}\)

\(\sin C=\frac{AB}{BC}=\frac{10}{26}=\frac{5}{13}\)

c,Áp dụng hệ thức   AB.AC=AH.BC

           => AH=AB.AC/BC=10.24/26=9,2

\(AB^2=BH.BC\)\(\Leftrightarrow10^2=BH.26\)\(\Rightarrow BH\approx3,8\)

\(\Rightarrow CH=22,2\)


B A C H

30 tháng 9 2017

- cảm ơn ạ 

a: Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH\cdot20=12\cdot16=192\)

hay AH=9,6(cm)