Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10a+b}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{1+\frac{b}{a}}\)
A nhỏ nhất khi b/a lớn nhất => b=9,a=1 => ab =19
A lớn nhất khi b/a nhỏ nhất => b=0 với a= 1;2;3...9
\(A=\frac{10a+b}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{1+\frac{b}{a}}\)
a) Để A là số nhỏ nhất thì \(\frac{b}{a}\)lớn nhất => b=9 ; a=1 => ab =19
b) Để A là số lớn nhất thì \(\frac{b}{a}\)nhỏ nhất => b=0 ; với a=1;2;3;4;5;6;7;8;9
ab =10;20;30;....;90
Câu 3 :
b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1
=> 2n + 8 chia hết cho 2n - 1
mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1
=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }
=> 2n - 1 \(\in\) { 1 ,3 , 9 }
=> 2n\(\in\){ 2 , 4 ,10}
=> n\(\in\){ 1, 2 ,5 }
=> P\(\in\){ 5 , 2 , 1 }
Vì P là nguyên tố nên P\(\in\){ 5,2}
vậy n\(\in\){ 1 , 2 }
Câu 4 :
Cầu 1:
\(\frac{a+b}{a^2+ab+b^2}=\frac{49}{1801}\)
Biến đổi ta có: \(\frac{a+b}{\left(a+b\right)^2-ab}=\frac{49}{1801}\)
Cứ cho a+b=49 thì
Thế a+b vào đẳng thức trên đc:
\(\frac{a+b}{2401-ab}=\frac{49}{1801}\)
Từ đó: ta có
\(\hept{\begin{cases}a+b=49\\ab=600\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=24\\b=25\end{cases}}\)hoặc \(\hept{\begin{cases}b=24\\a=25\end{cases}}\)
Vậy phân số cần tìm là ........... (có 2 p/s nha)
Câu 2 Dễ mà ~~~~~~~
Làm biếng :3
giúp mình với nha các bạn !!!!!!!!!!!!!!