K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HL
0
HL
1
7 tháng 11 2015
\(A=\frac{10a+b}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{1+\frac{b}{a}}\)
a) Để A là số nhỏ nhất thì \(\frac{b}{a}\)lớn nhất => b=9 ; a=1 => ab =19
b) Để A là số lớn nhất thì \(\frac{b}{a}\)nhỏ nhất => b=0 ; với a=1;2;3;4;5;6;7;8;9
ab =10;20;30;....;90
KN
18 tháng 5 2019
Câu hỏi của Phạm Hồng Ánh - Toán lớp 6 - Học toán với OnlineMath
BẠN THAM KHẢO
26 tháng 4 2022
Giải:
1) A=1/1.3+1/3.5+1/5.7+1/7.9+...+1/2017.2019
A=1/2.(2/1.3+2/3.5+2.5.7+2/7.9+...+2/2017.2019)
A=1/2.(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+...+1/2017-1/2019)
A=1/2.(1/1-1/2019)
A=1/2.2018/2019
A=1009/2019
Chúc bạn học tốt!
PH
18
D
25 tháng 5 2015
Đặt A = \(\frac{ab}{a+b}=\frac{10a+b}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{\frac{a+b}{a}}=1+\frac{9}{1+\frac{b}{a}}\)
Để A đạt giá trị nhỏ nhất thì \(\frac{9}{1+\frac{b}{a}}\)nhỏ nhất => \(1+\frac{b}{a}\) lớn nhất => b/a lớn nhất => b lớn nhất, a nhỏ nhất => b = 9, a = 1
Vậy Amin = \(\frac{19}{1+9}=1,9\)
FB
0
\(A=\frac{10a+b}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{1+\frac{b}{a}}\)
A nhỏ nhất khi b/a lớn nhất => b=9,a=1 => ab =19
A lớn nhất khi b/a nhỏ nhất => b=0 với a= 1;2;3...9