Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=\frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+....+\frac{69}{7^{70}}$
$7A=\frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+...+\frac{69}{7^{69}}$
$\Rightarrow 6A=7A-A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{69}}-\frac{69}{7^{70}}$
$42A=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}}$
$\Rightarrow 36A=42A-6A=1-\frac{69}{7^{69}}+\frac{69}{7^{70}}<1$
$\Rightarrow A< \frac{1}{36}$
Lời giải:
$S=\frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+...+\frac{69}{7^{70}}$
$7S=\frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+...+\frac{69}{7^{69}}$
$6S=7S-S=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}}$
$42S=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}}$
$\Rightarrow 42S-6S=(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}})-(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}})$
$\Rightarrow 36S=1-\frac{69}{7^{69}}-\frac{1}{7^{69}}+\frac{69}{7^{70}}$
Hay $36S=1-\frac{69.7-7-69}{7^{70}}=1-\frac{407}{7^{70}}$
$\Rightarrow S=\frac{1}{36}(1-\frac{407}{7^{70}})$
Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
A=\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)
Ta thấy :
\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\)
\(\dfrac{1}{100.100}< \dfrac{1}{99.100}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
Nhân xét :
\(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};\)
\(...;\dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}+...+\)
\(\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A< 1-\dfrac{1}{100}\)
\(\Rightarrow A< \dfrac{99}{100}\)
Vì \(A< \dfrac{99}{100}< 1\)
\(\Rightarrow A< 1\)
Bài 1)
Đặt \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)
Ta thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4};....;\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{99.100}\)\(\Rightarrow\) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)
\(\Rightarrow\) A < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+......+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow\) A < \(1-\dfrac{1}{100}\) < 1 \(\Rightarrow\) A < 1
Vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)< 1
Lời giải:
Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+....+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(7^2A=1-\frac{1}{7^2}+....+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n-2}}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(\Rightarrow A+7^2A=1-\frac{1}{7^{100}}\Rightarrow 50A=1-\frac{1}{7^{100}}<1\)
$\Rightarrow A< \frac{1}{50}$
\(\dfrac{1}{3^2}>\dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)
\(\dfrac{1}{4^2}>\dfrac{1}{4\cdot5}=\dfrac{1}{4}-\dfrac{1}{5}\)
...
\(\dfrac{1}{100^2}>\dfrac{1}{100}-\dfrac{1}{101}\)
Do đó: \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}>\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}>\dfrac{90.9}{303}=\dfrac{3}{10}\)(1)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3}-\dfrac{1}{4}\)
...
\(\dfrac{1}{100^2}< \dfrac{1}{99}-\dfrac{1}{100}\)
Do đó: \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=>\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}< \dfrac{50}{100}=\dfrac{1}{2}\)(2)
Từ (1),(2) suy ra \(\dfrac{3}{10}< \dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)
1/4^2 + 1/5^2 +... + 1/100^2 < 1/3.4 + 1/4.5 +...+ 1/99.100
A=1/3 - 1/4 + 1/4 - 1/5 +...+ 1/99 - 1/100
=1/3 - 1/100 < 1/3
bạn ơi cái câu <1 số hạng cuối cùng là j thế?
giúp mình nha mn, thanks