Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(1+3+3^2+3^3+...+3^{99}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{100}\right)-\left(1+3+3^2+...+3^{99}\right)\)
\(\Rightarrow2S=3^{100}-1\)
\(\Rightarrow2S+1=3^{100}-1+1=3^{100}\)
\(\Rightarrow2S+1\) là lũy thừa của 3
4= 30+31(làm ra nháp)
S= 3+32+33+...+3100
S= (3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)
S=(3x1+3x3)+(3^3x1+3^3x3)+(3^5x1+3^5x3)+...+(3^99x1+3^99x3)
S=3x(1+3)+3^3x(1+3)+3^5x(1+4)+...+3^99x(1+3)
S=3x4+3^3x4+3^5x4+...+3^99x4
S=4x(3+3^3+3^5+...+3^99)
=> S chia hết cho 4.
Đặt Tên Chi
Tìm kiếm
Báo cáo
Đánh dấu
24 tháng 12 2015 lúc 20:28
Cho S=3+32+33+........+3100
a, Chứng minh rằng S chia hết cho 4.
b, Chứng minh rằng 2S+3 là 1 lũy thừa của 3
Toán lớp 6
a,
S = 1 - 3 + 32 - 33+...+398 - 399
S = 30 - 31 + 32 - 33+...+ 398 - 399
xét dãy số: 0; 1; 2; 3;...;99
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)
100 : 4 = 25
Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì:
S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)
S = - 20+...+ 396.(1 - 3 + 32 - 33)
S = - 20 +...+ 396.(-20)
S = -20.( 30 + ...+ 396) (đpcm)
b,
S = 1 - 3 + 32 - 33+...+ 398 - 399
3S = 3 - 32 + 33-...-398 + 399 - 3100
3S + S = - 3100 + 1
4S = - 3100 + 1
S = ( -3100 + 1): 4
S = - ( 3100 - 1) : 4
Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)
S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)
S = (-20) + 34 . (-20) +.... + 396 . (-20)
S = (-20) . (1 + 34 +...+ 396)
\(\Rightarrow\)S \(⋮\) 20
(Ko bt có đúng ko)
*KO CHÉP MẠNG*
S=1+3+3^2+3^3+...+3^99
3S=3+3^2+3^3+3^4+...+3^99+3^100
3S-S=3^100-1
\(\Rightarrow\)2S=3^100-1
\(\Rightarrow\)2S+1=3^100-1+1=3^100.Vì 3^100 là lũy thừa của 3 mà 3^100=2S+1
Vậy 2S+1 là lũy thừa của 3
K ĐÚNG CHO MÌNH NHA.
S =1+3+32+33+…+399
3S =3+32+33+…+3100
3S-S=3100-1
2S=3100-1
2S+1=3100
Chứng tỏ 2S +1 là luỹ thừa của 3