Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
S - P = (1 - 1/2 + 1/3 -1/4+ ...+ 1/1007 - 1/1008 + ...+ 1/2013 - 1/2014 + 1/2015) - (1/1008 + 1/1009 + ...+1/2014 + 1/2015)
=1 - 1/2 + 1/3 - 1/4 + ... + 1007 -2/1008 - ... - 2/2014
= 1 - 1/2 + 1/3 - 1/4 + ...+ 1/1007 - 2/1008 - 2/1010 - ...- 2/2012 - 2/2014
= 1 - 1/2 + 1/3 - 1/4 + ....+ 1007 - 1/504 - 1/505 - ...- 1/1006 - 1/1007
= 1 - 1/2 + 1/3 - 1/4 + ...1/503 - 1/504 + 1/505 + ...+ 1/1005 - 1/1006 + 1/1007 - 1/504 - 1/505 - ...- 1/1006 - 1/1007
= 1 - 1/2 + 1/3 - 1/4 + ...1/503 - 2/504 - 2/506 - ..- 2/1006
= 1 - 1/2 + 1/3 - 1/4 + ...1/503 - 1/252 - 1/253 - ...- 1/503
Lại tiếp tục như trên, Lẻ mất, chẵn còn => S - P = 0 => (S-P)2015=0
sao phần b k có qui luật j vậy đúng ra nó phải là 3/2014+2/2015+2/2016 chứ ( 3 phân số cuối)
\(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+.....+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}=\left(\frac{2015+2}{2}\right)+\left(\frac{2014+3}{3}\right)+.....\left(\frac{1+2016}{2016}\right)+\frac{2017}{2017}=\frac{2017}{2}+\frac{2017}{3}+....+\frac{2017}{2017}=2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2017}\right)\Rightarrow\frac{B}{A}=2017\)
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
\(S=\left(1+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)\)
\(S=\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}\)
\(\Rightarrow\left(S-P\right)^{2016}=\left(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}-\frac{1}{1008}-\frac{1}{1009}-...-\frac{1}{2015}\right)^{2016}=0^{2016}=0\)
Ta thấy:
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
\(S=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)+\frac{1}{2015}\)
\(S=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)+\frac{1}{2015}\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)+\frac{1}{2015}\)
\(S=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}+\frac{1}{2015}\)
Mà \(P=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}+\frac{1}{2015}\) nên:
\(S=P\)\(\Rightarrow S-P=0\)\(\Rightarrow\left(S-P\right)^{2016}=0\)