K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
13 tháng 10 2022

\(S_n=1.2+2.3+3.4+...+n\left(n+1\right)\\ 3S_n=1.2.3+2.3.3+3.4.3+...+n.\left(n+1\right).3\\ 3S_n=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right).\left[n+2-\left(n-1\right)\right]\\ 3S_n=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right).n.\left(n+1\right)\\ 3S_n=n\left(n+1\right)\left(n+2\right)\\ S_n=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

13 tháng 6 2020

A = 1.2.3 + 2.3.4 + 3.4.5 ... + n(n + 1)(n + 2)

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + n(n + 1)(n + 2).4

4A = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5.(6 - 2)+ ... + n(n + 1)(n + 2)[(n + 3) - (n - 1)]

4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + n(n + 1)(n + 2)(n + 3) - (n-1)n(n+1)(n+2)

4A = n(n+1)(n+2)(n+3)

A = n(n + 1)(n+2)(n + 3) : 4

7 tháng 2 2017

\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)

\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)

\(A=7.\frac{13}{28}\)

\(A=\frac{13}{4}\)

29 tháng 5 2017

a) Ta có

S = \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n.\left(n+1\right).\left(n+2\right)}\)

2S = \(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{n.\left(n+1\right).\left(n+2\right)}\)

2S = \(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)2S = \(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)

S = \(\dfrac{1}{4}-\dfrac{1}{\left(n+1\right).\left(n+2\right):2}\)

b) A = \(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{99}\)

A = \(2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

A = \(2-\dfrac{1}{99}\)

A = \(\dfrac{197}{99}\)

c) Ta có

B = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)

B = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

B = \(1-\dfrac{1}{100}\)

B = \(\dfrac{99}{100}\)

d) Ta có

C = \(\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)

C = \(1+\left(1+\dfrac{98}{2}\right)+\left(1+\dfrac{97}{3}\right)+...+\left(1+\dfrac{1}{99}\right)\)

C = \(1+50+\dfrac{100}{3}+...+\dfrac{100}{99}\)

C = 51 + 100(\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\))

Đặt D = \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\)

D = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}\)

D = \(\dfrac{1}{2}-\dfrac{1}{99}\)

D = \(\dfrac{97}{198}\)

=> C = 51 + 100.\(\dfrac{97}{198}\)

C = 51 + \(\dfrac{4850}{99}\)

C = \(\dfrac{9899}{99}\)

Đây là bài làm của mình sai thì nx nha

9 tháng 8 2017

P\(=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+.....+\dfrac{4033}{\left(2016.2017\right)^2}\) \(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+.......+\dfrac{4033}{2016^2.2017^2}\) \(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+....+\dfrac{1}{2016^2}-\dfrac{1}{2017^2}\) =1\(-\dfrac{1}{2017^2}\) Do `1\(-\dfrac{1}{2017^2}\) <1\(\Rightarrow\) P<1 ( ĐPCM)

8 tháng 5 2018

P = \(\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+\dfrac{7}{\left(3.4\right)^2}+...+\dfrac{4033}{\left(2016.2017\right)^2}\)

P = \(\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{4033}{\left(2016.2017\right)^2}\)

P = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{2016^2}-\dfrac{1}{2017^2}\)

P = \(1-\dfrac{1}{2017^2}\)

⇒ P < 1

⇒ ĐPCM

AH
Akai Haruma
Giáo viên
17 tháng 8

Lời giải:

$3S_n=\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+....+\frac{(n+3)-n}{n(n+1)(n+2)(n+3)}$

$=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}$

$=\frac{1}{1.2.3}-\frac{1}{(n+1)(n+2)(n+3)}$

$\Rightarrow S_n=\frac{1}{1.2.3.3}-\frac{1}{3(n+1)(n+2)(n+3)}$

$\Rightarrow S_n=\frac{1}{18}-\frac{1}{3(n+1)(n+2)(n+3)}$

S=1.2+2.3+...+n(n+1)

=>3S=1.2.3+2.3.4+...+n(n+1)3

=1.2.3+2.3(4-1)+...+n(n+1)(n+2-(n-1))

=1.2.3+2.3.4-1.2.3+...+(n-1)n(n+1)-(n-1)n(n+1)+n(n+1)(n+2)

=n(n+1)(n+2)

=>S=\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

vậy \(S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

9 tháng 7 2017

3/ \(2\left(x-3\right)-3\left(1-2x\right)=4+4\left(1-x\right)\)

\(\Leftrightarrow2x-6-3+6x=4+4-4x\)

\(\Leftrightarrow8x-9=8-4x\)

\(\Leftrightarrow8x+4x=8+9\)

\(\Leftrightarrow12x=17\)

\(\Leftrightarrow x=\dfrac{17}{12}\)

Vậy \(x=\dfrac{17}{12}\)

4/ \(\dfrac{x-2}{2}-\dfrac{1+x}{3}=\dfrac{4-3x}{4}-1\)

\(\Leftrightarrow6\left(x-2\right)-4\left(1+x\right)=3\left(4-3x\right)-12\)

\(\Leftrightarrow6x-12-4-4x=12-9x-12\)

\(\Leftrightarrow6x-4-4x=12-9x\)

\(\Leftrightarrow2x-4=12-9x\)

\(\Leftrightarrow2x+9x=12+4\)

\(\Leftrightarrow11x=16\)

\(\Leftrightarrow x=\dfrac{16}{11}\)

Vậy \(x=\dfrac{16}{11}\)

9 tháng 5 2022

$\frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}(*)$

Với $n=1$ thì $(*)\Leftrightarrow \frac{1}{2}=\frac{1}{2}$

Vậy $(*)$ đúng với $n=1$

Giả sử với $n=k$,$ k\in \mathbb{N^*}$ thì $(*)$ đúng, tức là: 

$\frac{1.3.5...(2k-1)}{(k+1)(k+2)...(k+k)}=\frac{1}{2^k}$

Ta cần chứng minh với $n=k+1$ thì $(*)$ đúng, tức là: 

$\frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1}{2^{k+1}}=\frac{1}{2^k}.\frac{1}{2}$

$\Leftrightarrow \frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...(k+k)}$

$\Leftrightarrow \frac{1.3.5...(2k-1)2k(2k+1)}{(k+2)(k+3)...2k(2k+1)(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...2k}$

$\Leftrightarrow \frac{2k(2k+1)}{2k(2k+1)(2k+2)}=\frac{1}{2(k+1)}$

$\Leftrightarrow \frac{1}{(2k+2)}=\frac{1}{2(k+1)}$

Do đó với $n=k+1$ thì $(*)$ đúng

$\Rightarrow \frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 tháng 5 2022

thanks bạn

30 tháng 5 2018

\(\Rightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+..+\frac{1}{n^2}-\frac{1}{n+1^2}\)

\(\Rightarrow S=1-\frac{1}{n+1}\)

\(\Rightarrow S+\frac{n}{n+1}\)