Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(f\left[f\left(x\right)+x\right]=\left[f\left(x\right)+x\right]^2+m\left[f\left(x\right)+x\right]+n\)
\(=\left(x^2+mx+n+x\right)^2+m\left(x^2+mx+n+x\right)+n\)
\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+x^2+m\left(x^2+mx+n\right)+mx+n\)
\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+\left(x^2+mx+n\right)\)
\(=\left(x^2+mx+n\right)\left(x^2+mx+n+2x+m+1\right)\)
\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)
\(=f\left(x\right).f\left(x+1\right)\)
Thay \(x=2021\)
\(\Rightarrow f\left[f\left(2021\right)+2021\right]=f\left(2021\right).f\left(2022\right)\)
Đặt \(f\left(2021\right)+2021=k\)
Do \(f\left(x\right)\) có hệ số m;n nguyên \(\Rightarrow k\) nguyên
\(\Rightarrow f\left(k\right)=f\left(2021\right).f\left(2022\right)\) với k nguyên
Hay tồn tại số nguyên k thỏa mãn yêu cầu
Hi, thầy xin lỗi vì lúc chiều nhìn qua loa tưởng em thiếu giả thiết, không nhìn kĩ là em đã viết \(a,b,c\) nguyên. Tuy nhiên tác giả đã sai lầm khi chọn số \(\frac{1}{1000}\) vì nó làm bài toán này hơi tầm thường: Thực vậy, ta có thể chọn được giá trị của \(a,b,c\), ví dụ ta lấy \(a=14,b=-5,c=-4\to\left|a+b\sqrt{2}+c\sqrt{3}\right|=14-5\sqrt{2}-4\sqrt{3}
Thấy Q(2) = 14
=> am.xm+am-1.xm-1.......a1x.a0= 14( am,am-1,...,a1,a0 thuộc N, a0 khác 0)
=> am.2m+am-1.2m-1.......a12.a0= 14
Thấy : 2m,2m-1,...,2 là số chẵn
=> am,2m,...,a12 là số chẵn
=> a0 là số chẵn
* Nếu a lẻ
=> a + 83 chẵn
cmtt, có P(a + 83 là số chẵn )
* Nếu a chẵn
=> ....(cmtt)
=> P(a) chẵn
=> P(x) chẵn với mọi X thuộc N
=> Q(p(x)) chẵn và = 2014
:PPPPPPPPPPP
Đề sai. Bạn cho $a=-1; b=2021; c=2$ thì để có đpcm thì pt:
$-x^2+2021x+2=P(2021)P(2022)=-4020$ có nghiệm nguyên.
Mà dễ thấy pt này không có nghiệm nguyên nên đề sai.