K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2019

Ta có: \(P\left(1\right)=a+b+c\)

và \(P\left(3\right)=9a+3b+c\)

\(\Rightarrow P\left(1\right)+P\left(3\right)=10a+4b+2c=0\)

\(\Leftrightarrow5a+2b+c=0\)

Suy ra \(P\left(1\right)\)và \(P\left(3\right)\)là hai số đối nhau.

\(\Rightarrow P\left(1\right).P\left(3\right)\le0\)

(Dấu "="\(\Leftrightarrow a+b+c=9a+3b+c=0\))

16 tháng 9 2019

Ta có: \(P\left(1\right)=a+b+c;P\left(3\right)=9a+3b+c\) 

\(\Rightarrow F\left(x\right)=P\left(1\right).P\left(3\right)=\left(a+b+c\right)\left(9a+3b+c\right)\)

Ta sẽ chứng minh \(F\left(x\right)\le\left(5a+2b+c\right)^2=0\)(*)

Thật vậy, ta cần chứng minh: \(\left(5a+2b+c\right)^2-\left(a+b+c\right)\left(9a+3b+c\right)\ge0\) (1)

Có: \(VT=16a^2+8ab+b^2=\left(4a\right)^2+2.4a.b+b^2=\left(4a+b\right)^2\ge0\)

Do đó (1) đúng nên (*) đúng hay ta có đpcm.

P/s: Lâu rồi ko làm dang này nên ko chắc đâu nha.... vả lại khai triển bài này rối quá chả biết có làm sai gì ko, chưa check lại đâu

10 tháng 11 2016

Giả sử f(0), f(1), f(2) có giá trị nguyên là m,n,p. Theo đề bài ta có

\(1\hept{\begin{cases}c=m\left(1\right)\\a+b+c=n\left(2\right)\\4a+2b+c=p\left(3\right)\end{cases}}\)

Ta lấy (3) - 2(2) + (1) vế theo vế ta được

2a = p - 2n + m

=> 2a là số nguyên

Ta lấy 4(2) - (3) - 3(1) vế theo vế ta được

2b = 4n - p - 3m

=> 2b cũng là số nguyên

12 tháng 7 2021

¿¿¿¿¿¿¿¿

 

NV
14 tháng 9 2021

\(\left\{{}\begin{matrix}ab+bc+ca=abc\\a+b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}abc-ab-bc-ca=0\\a+b+c-1=0\end{matrix}\right.\)

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)

\(=abc-ab-ac+a-bc+b+c-1\)

\(=\left(abc-ab-bc-ca\right)+\left(a+b+c-1\right)\)

\(=0+0=0\) (ddpcm)

14 tháng 9 2021

\(VT=\left(a-1\right)\left(b-1\right)\left(c-1\right)\\ =\left(ab-a-b+1\right)\left(c-1\right)\\ =abc-ab-ac+a-bc+b+c-1\\ =abc-\left(ab+bc+ca\right)+\left(a+b+c\right)-1\\ =abc-abc+1-1=0=VP\)

a) \(P\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a-b+c\)

\(P\left(-2\right)=a\left(-2\right)^2+b\left(-2\right)+c=4a-2b+c\)

b) \(P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)=5a-3b+2c\)

\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\)

Do đó \(P\left(-1\right)\) . \(P\left(-2\right)=-\left[P\left(-2\right)^2\right]\le0\)

10 tháng 4 2019

a) vì a≤ b

Nhân cả 2 vế của BĐT với -2

=> -2a≥ -2b

Cộng cả 2 vế của BĐT với 3

=> -2a+3 ≥ -2b+3

b) vì a>b

Nhân cả 2 vế với 2

=> 2a>2b

Cộng cả 2 vế với (-5)

=> 2a -5> 2b-5

c) vì a>b

Nhân cả 2 vế với 5

=> 5a>5b (1)

Vì 0> -1

Cộng cả 2 vế với 5b

=> 5b> 5b -1 (2)

Từ (1) và (2) => 5a> 5b-1

11 tháng 4 2019

a/ a ≤ b =>-2a ≥ -2b => -2a+3 ≥ -2b+3

b/ a > b => 2a > 2b => 2a-5 > 2b-5

c/ a > b => 5a > 5b

0 > -1

=> 5a + 0 > 5b + (-1)

<=> 5a > 5b -1

NV
20 tháng 9 2020

\(a^3+b^3+c^3-3abc=a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab.0\)

\(=0-0=0\)

30 tháng 4 2016

Đề thế này phải ko bạn: 

Chứng minh rằng: \(x^5+y^5\ge x^4.y+x.y^4\)với \(x,y\ne0\)\(x+y\ge0\)

30 tháng 4 2016

bạn vào fx viết lại đề đi nha, sai đề rùi

23 tháng 9 2018

mk chiu thua bn oi

23 tháng 9 2018

a) Ta có: a+b+c+d=0 
Suy ra f(1)= a.1^3+b.1^2+c.1+d=a+b+c+d=.0 
Vậy x=1 là một nghiệm của f(x) 
b) Ta có: a+c=b+d => -a+b-c+d=0 
Suy ra f(-1)= a.(-1)^3+b.(-1)^2+c.(-1)+d=-a+b-c+d=0 
Vậy x=-1 là một nghiệm của f(x)