K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 9 2020

\(a^3+b^3+c^3-3abc=a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab.0\)

\(=0-0=0\)

20 tháng 12 2018

Theo đề bài : a3 + b3 +c3 = 3abc và a;b;c >0 nên : a = b = c (cái này mk k bịa ra nah ) có quy tắc nha !

Vậy biểu thức  trên sẽ bằng 1 + 1 +1 = 3

Chúc bn hc tốt :3

16 tháng 9 2018

\(a)\)\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)

\(\Leftrightarrow\)\(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}=\frac{a+b+c+d+a+b-c-d}{a-b+c-d+a-b-c+d}=\frac{2\left(a+b\right)}{2\left(a-b\right)}=\frac{a+b}{a-b}\) \(\left(1\right)\)

Lại có : 

\(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}=\frac{a+b+c+d-a-b+c+d}{a-b+c-d-a+b+c-d}=\frac{2\left(c+d\right)}{2\left(c-d\right)}=\frac{c+d}{c-d}\) \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)\(\Leftrightarrow\)\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}\) \(\left(3\right)\)

Lại có : 

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}\) \(\left(4\right)\)

Từ \(\left(3\right)\) và \(\left(4\right)\) suy ra \(\frac{a}{c}=\frac{b}{d}\) ( đpcm ) 

Chúc bạn học tốt ~ 

16 tháng 9 2018

\(b)\)\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\) ( vì \(a+b+c=0\) ) 

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)

Vậy ... 

Chúc bạn học tốt ~ 

15 tháng 8 2018

1 ) Ta có :

\(a+b-c=0\Leftrightarrow a+b=c\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Rightarrow a^3+b^3-c^3=a^3+b^3-\left(a+b\right)^3\)

\(\Rightarrow a^3+b^3-c^3=a^3+b^3-3a^2b-3b^2a-b^3\)

\(\Rightarrow a^3+b^3-c^3=-3a^2b-3b^2a\)

\(\Rightarrow a^3+b^3-c^3=-3ab\left(a+b\right)\)

\(\Rightarrow a^3+b^3-c^3=-3abc\left(đpcm\right)\)

2 ) Ta có :

\(a-b+c=0\Leftrightarrow c=b-a\Leftrightarrow c^3=\left(b-a\right)^3\)

\(\Rightarrow a^3-b^3+c^3=a^3-b^3+\left(b-a\right)^3\)

\(\Rightarrow a^3-b^3+c^3=a^3-b^3+b^3-3a^2b+3b^2a-a^3\)

\(\Rightarrow a^3-b^3+c^3=-3a^2b+3b^2a\)

\(\Rightarrow a^3-b^3+c^3=-3ab\left(a-b\right)\)

\(\Rightarrow a^3-b^3+c^3=3ab\left(b-a\right)\)

\(\Rightarrow a^3-b^3+c^3=3abc\left(đpcm\right)\)

15 tháng 8 2018

1 ) Bổ sung dấu \(\Rightarrow\) thứ 2 :

\(\Rightarrow...=a^3+b^3-a^3-3a^2b-3b^2a-b^3\)

10 tháng 11 2017

\(\text{Ta có : }a^3+b^3+c^3-3abc=0\\ \Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\\ Mà\text{ }a;b;c>0\left(a;b;c\text{ }là\text{ }3\text{ }cạnh\text{ }của\text{ }1\text{ }\Delta\right)\\ \Rightarrow a^2+b^2+c^2-ab-ac-bc=0\\ \Rightarrow2\left(a^2+b^2+c^2-ab-ac-bc\right)=0\\ \Rightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\\ \Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\\ \Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\\ Do\text{ }\left(a-b\right)^2\ge0\forall a;b\\ \left(a-c\right)^2\ge0\forall a;c\\ \left(b-c\right)^2\ge0\forall b;c\\ \Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\forall a;b;c\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\Rightarrow a=b=c\\ \Rightarrow\Delta\text{ }có\text{ }các\text{ }cạnh\text{ }a;b;c\text{ }là\text{ }\Delta\text{ }đều\text{ }\left(Định\text{ }nghĩa\text{ }\Delta\text{ }đều\text{ }\right)\)

Vậy...........................

7 tháng 8 2016

help meeeeeeeeeeeeeeeeeeeeeeeeeeeeee

7 tháng 8 2016

1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc

                           = (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)

                           = (a+b+c)( a2+b2+c2-ab-bc-ca)

22 tháng 6 2018

\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(a^3+b^3+c^3-3abc=a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)\)

\(-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\Rightarrow\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

\(\left(a-b\right)^2>=0\Rightarrow a^2-2ab+b^2>=0\Rightarrow a^2+b^2>=2ab\)

tương tự \(a^2+c^2>=2ac;b^2+c^2>=2bc\)

\(\Rightarrow a^2+b^2+a^2+c^2+b^2+c^2>=2ab+2ac+2bc\Rightarrow2\left(a^2+b^2+c^2\right)>=2\left(ab+ac+bc\right)\)

\(\Rightarrow a^2+b^2+c^2.=ab+ac+bc\)dấu = xảy ra khi a=b=c

mà nếu \(a^2+b^2+c^2-ab-ac-bc=0\Rightarrow a^2+b^2+c^2=ab+ac+bc\Rightarrow a=b=c\)

th1:a+b+c=0

\(\Rightarrow a+b=-c;a+c=-b;b+c=-a\)

\(M=\frac{ab^2}{a^2+b^2-c^2}+\frac{bc^2}{b^2+c^2-a^2}+\frac{ca^2}{c^2+a^2-b^2}=\frac{ab^2}{a^2+b^2-\left(-c\right)^2}+\frac{bc^2}{b^2+c^2-\left(-a\right)^2}+\frac{ca^2}{c^2+a^2-\left(-b\right)^2}\)

\(=\frac{ab^2}{a^2+b^2-\left(a+b\right)^2}+\frac{bc^2}{b^2+c^2-\left(b+c\right)^2}+\frac{ca^2}{c^2+a^2-\left(c+a\right)^2}\)

\(=\frac{ab^2}{a^2+b^2-a^2-2ab-b^2}+\frac{bc^2}{b^2+c^2-b^2-2bc-c^2}+\frac{ca^2}{c^2+a^2-c^2-2ac-a^2}\)

\(=\frac{ab^2}{-2ab}+\frac{bc^2}{-2bc}+\frac{ca^2}{-2ac}=\frac{b}{-2}+\frac{c}{-2}+\frac{a}{-2}=\frac{a+b+c}{-2}=\frac{0}{-2}=0\)

th2:a=b=c tự lm nhá

20 tháng 10 2019

a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

=> a=b=c

20 tháng 10 2019

b, \(0=\left(a+b+c\right)^3=a^3+b^3+c^3+6abc+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3ca^2\)

\(=a^3+b^3+c^3+6abc+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)

\(=a^3+b^3+c^3+6abc-3abc-3abc-3abc\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

3 tháng 12 2017

Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)

Vậy \(x=y=\frac{1}{2}\)

19 tháng 7 2017

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3abc-3a^2b-3ab^2=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\) (luôn đúng vì \(a+b+c=0\))

Vậy \(a^3+b^3+c^3=3abc\)