K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
18 tháng 5 2021

\(2x^2+\left(2m-1\right)x+m-1=0\)

\(\Delta=\left(2m-1\right)^2-4.2\left(m-1\right)=4m^2-12m+5\)

Để phương trình đã cho có hai nghiệm phân biệt \(x_1,x_2\)thì \(\Delta\ge0\)

\(\Rightarrow4m^2-12m+5\ge0\Leftrightarrow\left(2m-5\right)\left(2m-1\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\le\frac{1}{2}\\m\ge\frac{5}{2}\end{cases}}\).

Khi phương trình có hai nghiệm phân biệt, theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\).

Ta có hệ: \(\hept{\begin{cases}3x_1-4x_2=11\\x_1+x_2=\frac{1-2m}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}3x_1-4x_2=11\\4x_1+4x_2=2-4m\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=\frac{13-4m}{7}\\x_2=\frac{-19-6m}{14}\end{cases}}\)

\(x_1x_2=\frac{13-4m}{7}.\frac{-19-6m}{14}=\frac{m-1}{2}\Leftrightarrow\orbr{\begin{cases}m=-2\left(tm\right)\\m=\frac{33}{8}\left(tm\right)\end{cases}}\)

28 tháng 5 2020

\(\Delta=\left(2m-3\right)^2>0\Rightarrow m\ne\frac{3}{2}\)

Áp dụng hệ thức Vi-ét,ta có :

\(\hept{\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4x_1+4x_2=2\left(1-2m\right)\\3x_1-4x_2=11\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}7x_1=13-4m\\x_1+x_2=\frac{1-2m}{2}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x_1=\frac{13-4m}{7}\\x_2=\frac{1-2m}{2}-x_1=\frac{1-2m}{2}-\frac{13-4m}{7}=\frac{-6m-19}{14}\end{cases}}\)

Mà \(x_1x_2=\frac{m-1}{2}\Rightarrow\frac{13-4m}{7}.\frac{-6m-19}{14}=\frac{m-1}{2}\)

\(\Rightarrow\orbr{\begin{cases}m=\frac{33}{8}\\m=-2\end{cases}\left(tm\right)}\)

Vậy ...

28 tháng 5 2020

đề là tìm m chứ ko phải tìm x1,x2 nha bạn. 

\(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)

\(=4m^2-4m+1-8m+8\)

\(=4m^2-12m+9=\left(2m-3\right)^2\)

Để phương trình có hai nghiệm phân biệt thì 2m-3<>0

hay m<>3/2

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\2x_1+2x_2=-2m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\4x_1+4x_2=-4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=-4m+13\\4x_2=3x_1-11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\4x_2=\dfrac{-12m+36}{7}-\dfrac{77}{7}=\dfrac{-12m-41}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\x_2=\dfrac{-12m-41}{28}\end{matrix}\right.\)

Theo Vi-et, ta được: \(x_1x_2=\dfrac{m-1}{2}\)

\(\Leftrightarrow\dfrac{\left(4m-13\right)\left(12m+41\right)}{196}=\dfrac{m-1}{2}\)

\(\Leftrightarrow\left(4m-13\right)\left(12m+1\right)=98\left(m-1\right)\)

\(\Leftrightarrow48m^2+4m-156m-13-98m+98=0\)

\(\Leftrightarrow48m^2-250+85=0\)

Đến đây bạn chỉ cần giải pt bậc hai là xong rồi

9 tháng 3 2022

 \(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+10\)

\(=\left(2m-3\right)^2+1>0\)

Vậy pt có 2 nghiệm pb  

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\left(1\right)\\x_1x_2=\dfrac{m-1}{2}\left(2\right)\end{matrix}\right.\)

Ta có \(3x_1-4x_2=11\left(3\right)\)

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}4x_1+4x_2=2-4m\\3x_1-4x_2=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=13-4m\\x_2=\dfrac{1-2m}{2}-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{13-4m}{7}\\x_2=\dfrac{1-2m}{2}-\dfrac{13-4m}{7}\end{matrix}\right.\)

\(x_2=\dfrac{7-14m-26+8m}{14}=\dfrac{-19-6m}{14}\)

Thay vào (2) ta được \(\left(\dfrac{13-4m}{7}\right)\left(\dfrac{-19-6m}{14}\right)=\dfrac{m-1}{2}\)

\(\Leftrightarrow m=4,125\)

4 tháng 1 2022

PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=\left(2m-3\right)^2-4\left(m-3\right)=9>0\)

Vậy PT có 2 nghiệm phân biệt với mọi m

Ta có \(\left[{}\begin{matrix}x_1=\dfrac{2m-3+3}{2}=m\\x_2=\dfrac{2m-3-3}{2}=m-3\end{matrix}\right.\)

Ta thấy \(m>m-3\) nên \(1< m-3< m< 6\Leftrightarrow4< m< 6\)

Vậy \(4< m< 6\)  thỏa yêu cầu đề

a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)

\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)

\(\Leftrightarrow4x^2-8x-17=0\)

\(\Leftrightarrow\left(2x-2\right)^2=21\)

hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)

b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)

\(=4+4m^2+16=4m^2+20>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

NV
12 tháng 4 2021

a. Bạn tự giải

b.

\(\Delta=\left(3m-1\right)^2-4\left(2m^2+2m\right)=m^2-14m+1\)

Pt có 2 nghiệm pb khi \(m^2-14m+1>0\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3m-1\\x_1x_2=2m^2+2m\end{matrix}\right.\)

\(\left|x_1-x_2\right|=2\Leftrightarrow\left(x_1-x_2\right)^2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)

\(\Leftrightarrow\left(3m-1\right)^2-4\left(2m^2+2m\right)=4\)

\(\Leftrightarrow m^2-14m-3=0\Rightarrow m=7\pm2\sqrt{13}\) (đều thỏa mãn (1))

\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)\)

\(=4m^2-4m+1-8m+8\)

\(=4m^2-12m+9=\left(2m-3\right)^2\)>=0

=>Phương trình luôn có hai nghiệm

\(\left|x_1-x_2\right|=3\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=3\)

\(\Leftrightarrow\sqrt{\left(\dfrac{1-2m}{2}\right)^2-4\cdot\dfrac{m-1}{2}}=3\)

\(\Leftrightarrow\dfrac{1}{4}\left(4m^2-4m+1\right)-2\left(m-1\right)-3=0\)

\(\Leftrightarrow m^2-m+\dfrac{1}{4}-2m+2-3=0\)

\(\Leftrightarrow m^2-3m-\dfrac{3}{4}=0\)

\(\Leftrightarrow4m^2-12m-3=0\)

Đến đây bạn chỉ cần giải pt bậc hai là được rồi

AH
Akai Haruma
Giáo viên
21 tháng 5 2022

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.