Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để pt đã cho có nghiệm nguyên dương thì \(\Delta =p^2-4q\) là số chính phương.
Đặt \(p^2-4q=k^2\Leftrightarrow4q=\left(p-k\right)\left(p+k\right)\) với k là số tự nhiên.
Do p - k, p + k cùng tính chẵn, lẻ mà tích của chúng chẵn nên hai số này cùng chẵn.
Mặt khác p - k < p + k và q là số nguyên tố nên p - k = 2; p + k = 2q hoặc p - k = 4; p + k = q.
Nếu p - k = 4; p + k = q thì q chẵn do đó q = 2 (vô lí vì p + k > p - k).
Nếu p - k = 2; p + k = 2q thì 2p = 2q + 2 tức p = q + 1. Do đó q chẵn tức q = 2. Suy ra p = 3.
Thử lại ta thấy pt \(x^2-3x+2=0\) có nghiệm nguyên dương x = 1 và x = 2.
Vậy p = 3; q = 2.
\(A=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left[\frac{x_1^2+x^2_2}{x_1x_2}\right]^2-2=\left[\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2\)
\(=\left[\frac{\left(2m-2\right)^2}{2m-5}-2\right]^2-2\)\(=\left(\frac{4m^2-8m+4}{2m-5}-2\right)^2-2=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)
A nguyên khi \(\left(2m-1+\frac{9}{2m-5}\right)^2\in Z\)
\(\Leftrightarrow B=2m-1+\frac{9}{2m-5}=\frac{8m^2-12m+14}{2m-5}\)\(=\sqrt{k}\) với k là một số nguyên dương.
\(\Rightarrow8m^2-12m+14=\sqrt{k}\left(2m-5\right)\)\(\Leftrightarrow8m^2-2\left(6+\sqrt{k}\right)m+14+5\sqrt{k}=0\text{ (1)}\)
(1) có nghiệm m khi \(\Delta'=\left(\sqrt{k}+6\right)^2-8\left(14+5\sqrt{k}\right)\ge0\)
\(\Leftrightarrow k-28\sqrt{k}-76\ge0\Leftrightarrow\sqrt{k}\le14-4\sqrt{17}
Bài này phải là n nguyên dương nhé
Ta có bài toán tổng quát : Cho pt \(ax^2+bx+c=0\left(a\ne0\right)\)có 2 nghiệm x1 ; x2
Đặt \(S_n=x_1^n+x_2^n\)thì pt \(aS_{n+2}+bS_{n+1}+cS_n=0\)cũng có nghiệm với n nguyên dương
Thật vậy Có : \(aS_{n+2}+bS_{n+1}+cS_n=a\left(x_1^{n+2}+x_2^{n+2}\right)+b\left(x_1^{n+1}+x_2^{n+1}\right)+c\left(x_1^n+x_2^n\right)\)
\(=x_1^n\left(ax_1^2+bx_1+c\right)+x_2^n\left(ax_2^2+bx_2+c\right)\)
\(=0\)
Vậy bài toán đc c/m
Áp dụng bài toán trên :pt \(x^2-3x+1=0\)Có nghiệm nên
pt \(s_{n+2}-3S_{n+1}+S_n=0\)cũng có nghiệm
\(\Rightarrow S_{n+2}=3S_{n+1}-S_n\)
Ta sẽ c/m Sn là số nguyên bằng phương pháp quy nạp
Với \(n=0\Rightarrow S_0=2\inℤ\)
Với \(n=1\Rightarrow S_1=3\inℤ\)
Với \(n=2\Rightarrow S_2=7\inℤ\)
Giả sử bài toán đúng với .n = k và n = k + 1 (k là stn)
Ta phải c/m phải toán đúng với n = k + 2
Có \(S_{k+2}=6S_{k+1}-S_k\inℤ\left(Do\text{ }S_{k+1};S_k\inℤ\right)\)
Vậy \(S_n\inℤ\forall n\inℕ^∗\)
Phương trình có 2 nghiêm nguyên dương m, n. Khi đó mn=q, m+n=p, do q là số nguyên tố nên chỉ có 2 ước nguyên dương là 1, q. Do đó {m, n}={1; q}
Khi đó 1+q=p, do đó p, q khác tính chẵn lẻ, mà chỉ có 2 là số nguyên tố chẵn, do đó q=2, p=3
p²+q²=2²+3²=13 là số nguyên tố ( đọc)