Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2(m-1)x+3=2m-5
=>x(2m-2)=2m-5-3=2m-8
a: (1) là phương trình bậc nhất một ẩn thì m-1<>0
=>m<>1
b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0
=>m=1
c: Để (1) có nghiệm duy nhất thì m-1<>0
=>m<>1
d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0
=>Ko có m thỏa mãn
e: 2x+5=3(x+2)-1
=>3x+6-1=2x+5
=>x=0
Khi x=0 thì (1) sẽ là 2m-8=0
=>m=4
a, m\(x\) -2\(x\) + 3 = 0
Với m = -4 ta có :
-4\(x\) - 2\(x\) + 3 = 0
-6\(x\) + 3 = 0
6\(x\) = 3
\(x\) = 3 : 6
\(x\) = \(\dfrac{1}{2}\)
b, Vì \(x\) = 2 là nghiệm của phương trình nên thay \(x\) = 2 vào phương tình ta có : m.2 - 2.2 + 3 = 0
2m - 1 = 0
2m = 1
m = \(\dfrac{1}{2}\)
c, m\(x\) - 2\(x\) + 3 = 0
\(x\)( m -2) + 3 = 0
\(x\) = \(\dfrac{-3}{m-2}\)
Hệ có nghiệm duy nhất khi m - 2 # 0 => m#2
d, Để phương trình có nghiệm nguyên thì: -3 ⋮ m -2
m - 2 \(\in\) { - 3; -1; 1; 3}
m \(\in\) { -1; 1; 3; 5}
(2x+m)(x-1)-2x^2+mx+m-2=0
<=> 2x^2+(m-2)x-m -2x^2+mx+m-2=0
<=> (2m-2)x-2=0
<=> (2m-2)x=2
<=> x=2/(2m-2)
Để pt có nghiệm o âm <=> 2/(2m-2)>0 <=> 2m-2 >0 <=> m>1
Vậy PT có nghiệm o âm <=> m>1
a)Thay m=-1 vào phương trình ta đc:
\(4.\left(-1\right)^2.x-4x-3.\left(-1\right)=3\)
\(\Leftrightarrow4x-4x+3=3\)
\(\Leftrightarrow0x=0\)(Luôn đúng)
\(\Leftrightarrow\)Pt có vô số nghiệm
Vậy pt có vô số nghiệm.
b)Thay x=2 vào phương trình ta có:
\(4m^2.2-4.2-3m=3\)
\(\Leftrightarrow8m^2-8-3m=3\)
\(\Leftrightarrow8m^2-3m-11=0\)
\(\Leftrightarrow8m^2+8m-11m-11=0\)
\(\Leftrightarrow8m\left(m+1\right)-11\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(8m-11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\8m-11=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=-1\\m=\frac{11}{8}\end{cases}}\)
Vậy tập nghiệm của pt là S={-1;\(\frac{11}{8}\)}
c)Ta có:
\(5x-\left(3x-2\right)=6\)
\(\Leftrightarrow5x-3x+2=6\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
Có x=2 là nghiệm của pt \(5x-\left(3x-2\right)=6\)
Để \(4m^2x-4x-3m=3\Leftrightarrow5x-\left(3x-2\right)=6\)
\(\Leftrightarrow\)x=2 là nghiệm của \(4m^2x-4x-3m=3\)
Thay x=2 vào pt trên ta đc:
\(4m^2.2-4.2-3m=3\)(Giống câu b)
Vậy m=-1,m=11/8...
d)Có:\(4m^2x-4x-3m=3\)
\(\Leftrightarrow4x\left(m^2-1\right)=3+3m\)
Để pt vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}m^2-1=0\\3+3m\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne-1\end{cases}}\)
\(\Leftrightarrow m=1\)
Vậy m=1 thì pt vô nghiệm.
a) Thay m=2 vào phương trình, ta được:
\(2^2+4\cdot3-3=2^2+x\)
\(\Leftrightarrow x+4=4+12-3\)
\(\Leftrightarrow x+4=13\)
hay x=9
Vậy: Khi m=2 thì x=9
Lời giải:
Không biết bạn có viết sai đề không...........
PT $\Leftrightarrow x=4m-3$
a) Với $m=2$ thì $x=4.2-3=5$
Vậy $x=5$
b) Tương ứng với mỗi $m\in\mathbb{R}$ PT đều có duy nhất 1 nghiệm $x=4m-3$
c) Tương ứng với mỗi $m\in\mathbb{Z}$ PT đều có nghiệm nguyên $x=4m-3$
Lời giải:
a)
Để pt luôn có nghiệm thì \(\Delta'=1^2-m\geq 0\Leftrightarrow 1-m\geq 0\Leftrightarrow m\leq 1\)
Áp dụng định lý Viet, với $x_1,x_2$ là hai nghiệm của pt ( chưa xét tính phân biệt) thì: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2\end{matrix}\right.(*)\)
b) Nếu pt có hai nghiệm cùng là số âm thì \(x_1+x_2< 0\Leftrightarrow 2< 0\) (vô lý)
Do đó pt không thể có hai nghiệm cùng là số âm.
c) Sử dụng điều kiện $(*)$
Nếu \(x_1-2x_2=5\Leftrightarrow 3x_1-2(x_1+x_2)=5\)
\(\Leftrightarrow 3x_1-4=5\Rightarrow 3x_1=9\Rightarrow x_1=3\)
\(\Rightarrow x_2=2-x_1=2-3=-1\)
Khi đó: \(x_1x_2=3(-1)=-3\Leftrightarrow m=-3\) (t/m)
Vậy \(m=-3\)
x^2 -2x +m=0
x^-2x+1=1-m
(x-1)^2=1-m
a)vt >=0=>vp>=0=>1-m>=0
m<=1
b)dk(a)<=>|x-1|=can(1-m)
x1=1+can(1-m)
x2=1-can(1-m)
co can (1-m)>=0=>x>=0 moi m theo dk (a)
c)
x1-2x2=5
(x1+x2)-3x2=5
<=>3x2=-3
x2=-1
kq(b) x1>=0
=>x2=1-can(1-m)
<=>can(1-m)=2
1-m=4
m=-3