Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Khi m=1 thì (1) sẽ là x^2+1=0
=>x thuộc rỗng
b: Thay x=1 vào (1),ta được:
1^2-2(m-1)+m^2=0
=>m^2+1-2m+2=0
=>m^2-2m+3=0
=>PTVN
c: Thay x=-3 vào pt, ta được:
(-3)^2-2*(m-1)*(-3)+m^2=0
=>m^2+9+6(m-1)=0
=>m^2+6m+3=0
=>\(m=-3\pm\sqrt{6}\)
a) Thay m=2:
\(x^2-x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1+\sqrt{13}}{2}\\x=\frac{-1-\sqrt{13}}{2}\end{matrix}\right.\)
b) Thay x=2:
\(4-2\left(m-1\right)+m-5=0\)
\(\Leftrightarrow-m+1=0\)
\(\Leftrightarrow m=1\)
Thay m=1:
\(x^2-4=0\)
\(\Leftrightarrow x=\pm2\)
Vậy nghiệm còn lại là -2.
c) Có: \(\Delta=\left(m-1\right)^2-4\left(m-5\right)\)
\(\Delta=m^2-6m+21>0\forall m\)
Vậy pt luôn có nghiệm với mọi m.
Để phương trình có hai nghiệm cùng dấu:
\(\left\{{}\begin{matrix}\Delta>0\\a.c>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-1\right)^2-8\left(m-1\right)>0\\2\left(m-1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4m^2-12m+9>0\\m>1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-3\right)^2>0\\m>1\end{matrix}\right.\) \(\Rightarrow m>1\)
Khi đó, ta có \(x_1+x_2=2m-1>2-1>0\Rightarrow\) hai nghiệm đều mang dấu dương
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
Do x=3 là một nghiệm:
\(\left(m-1\right).9-\left(2m+1\right).3+1=0\)
\(\Leftrightarrow3m-11=0\Leftrightarrow m=\frac{11}{3}\)
Theo Viet: \(x_1x_2=\frac{1}{m-1}\Rightarrow x_2=\frac{1}{\left(m-1\right)x_1}=\frac{1}{\left(\frac{11}{3}-1\right).3}=\frac{1}{8}\)
Để phương trình có 2 nghiệm trái dấu:
\(ac< 0\Rightarrow m\left(m-4\right)< 0\Rightarrow0< m< 4\)
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
Bài 1:
a, Thay m=-1 vào (1) ta có:
\(x^2-2\left(-1+1\right)x+\left(-1\right)^2+7=0\\
\Leftrightarrow x^2+1+7=0\\
\Leftrightarrow x^2+8=0\left(vô.lí\right)\)
Thay m=3 vào (1) ta có:
\(x^2-2\left(3+1\right)x+3^2+7=0\\ \Leftrightarrow x^2-2.4x+9+7=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\)
b, Thay x=4 vào (1) ta có:
\(4^2-2\left(m+1\right).4+m^2+7=0\\ \Leftrightarrow16-8\left(m+1\right)+m^2+7=0\\ \Leftrightarrow m^2+23-8m-8=0\\ \Leftrightarrow m^2-8m+15=0\\ \Leftrightarrow\left(m^2-3m\right)-\left(5m-15\right)=0\\ \Leftrightarrow m\left(m-3\right)-5\left(m-3\right)=0\\ \Leftrightarrow\left(m-3\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=5\end{matrix}\right.\)
c, \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+7\right)=m^2+2m+1-m^2-7=2m-6\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-6\ge0\Leftrightarrow m\ge3\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+7\end{matrix}\right.\)
\(x_1^2+x_2^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-2\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-2m^2-14=0\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)
\(x_1-x_2=0\\ \Leftrightarrow\left(x_1-x_2\right)^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-4\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-4m^2-28=0\\ \Leftrightarrow8m=28=0\\ \Leftrightarrow m=\dfrac{7}{2}\left(tm\right)\)
Bài 2:
a,Thay m=-2 vào (1) ta có:
\(x^2-2x-\left(-2\right)^2-4=0\\ \Leftrightarrow x^2-2x-4-4=0\\ \Leftrightarrow x^2-2x-8=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
b, \(\Delta'=\left(-m\right)^2-\left(-m^2-4\right)\ge0=m^2+m^2+4=2m^2+4>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-4\end{matrix}\right.\)
\(x_1^2+x_2^2=20\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow2^2-2\left(-m^2-4\right)=20\\ \Leftrightarrow4+2m^2+8-20=0\\ \Leftrightarrow2m^2-8=0\\ \Leftrightarrow m=\pm2\)
\(x_1^3+x_2^3=56\\ \Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=56\\ \Leftrightarrow2^3-3\left(-m^2-4\right).2=56\\ \Leftrightarrow8-6\left(-m^2-4\right)-56\\ =0\\ \Leftrightarrow8+6m^2+24-56=0\\ \Leftrightarrow6m^2-24=0\\ \Leftrightarrow m=\pm2\)
\(x_1-x_2=10\\ \Leftrightarrow\left(x_1-x_2\right)^2=100\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-100=0\\ \Leftrightarrow2^2-4\left(-m^2-4\right)-100=0\\ \Leftrightarrow4+4m^2+16-100=0\\ \Leftrightarrow4m^2-80=0\\ \Leftrightarrow m=\pm2\sqrt{5}\)
Lời giải:
a)
Khi $t=1$ thì PT trở thành:
\(x^2-2=0\Leftrightarrow x^2=2\Rightarrow x=\pm \sqrt{2}\)
b)
Để (1) có nghiệm thì \(\Delta'_{(1)}\geq 0\)
\(\Leftrightarrow (t-1)^2-(t^2-3)\geq 0\)
\(\Leftrightarrow -2t+4\geq 0\)
\(\Leftrightarrow t\leq 2\)
c) Để PT có 2 nghiệm thì \(\Delta'_{(1)}>0\Leftrightarrow t< 2\). Khi đó với $x_1,x_2$ là 2 nghiệm của (1), áp dụng định lý Vi-et ta có:
\(\left\{\begin{matrix} x_1+x_2=2(t-1)\\ x_1x_2=t^2-3\end{matrix}\right.\)
Tổng 2 nghiệm bằng tích 2 nghiệm, nghĩa là:
\(x_1+x_2=x_1x_2\)
\(\Leftrightarrow 2(t-1)=t^2-3\)
\(\Leftrightarrow t^2-2t-1=0\Rightarrow t=1\pm \sqrt{2}\)
Kết hợp với $t< 2$ suy ra $t=1-\sqrt{2}$
ai giúp mk vớiT^T