K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

làm cả tình bày cho mk nha

7 tháng 11 2018

bài 3 nè : ta có a=42q+r=2*3*7q+r(q,r thuộc N,0<r<42 Vì a là SNT nên r ko chia hết cho 2,3,7 tìm các hợp số <42 loại chia hết cho 3,7 còn 25 r=25

21 tháng 11 2019
(n-4) chia hết cho (n+1)
3 tháng 11 2016

Ví p là SNT > 3

=> p có dạng 3q + 1 hoặc 3p + 2

+ Xét p = 3p + 2

Ta có :

p + 4 = 3p + 2 + 4 = 3 p + 6 = 3 ( p + 2 )

Vì 3 ( p + 2 ) chia hết cho 3 nên p + 4 là hợp số

=> loại p = 3p + 2

Vậy p = 3q + 1

Ta có :

p + 8 = 3q + 1 + 8 = 3q + 9 = 3 ( q + 3 )

Ví 3 ( q + 3 ) chia hết cho 3

Mà p + 8 > 3

=> p + 8 là hợp số

Vậy p + 8 là hợp số

3 tháng 11 2018

Trong olm có ai ở Sài gòn không? ở quận mấy?

có ai ở long xuyên không?

có ai ở Đà lạt không?

Nếu có hãy nhắn tin vs mình nhé! Mình đã đọc nội qui.vui lòng ko đăng cái  thứ nhảm loz ấy lên đây=))

21 tháng 2 2016

P+100 Là số nguyên tố

21 tháng 2 2016

ta có p>3=>p đc viết dưới 2 dạng p=3k+1 và p=3k+2

xét p=3k+2

=>p+100=3k+2+100=3k+102 chia hết cho 3=>p+100 là hợp số

17 tháng 2 2020

Vì p là số nguyên tố lớn hơn 3 nên p là số nguyên tố lẻ

=> Tổng p+2021 là số chẵn

Mà p+2021>2 nên p+2021 là hợp số

Vậy p+2021 là họp số.

14 tháng 4 2016

p>3 => p có dạng 3k+1; 3k+2

p = 3k+1 => 2p+7 = 2(3k+1) +7= 6k+2+7 = 6k+9 chia hết cho 3 (thỏa mãn)

p = 3k+2=> 2p+7 = 2(3k+2)+ 7 = 6k+4+7= 6k+11 (loại)

Vậy 2p+7 là hợp số

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Lời giải:

Vì $p$ là số nguyên tố lớn hơn $5$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ là số tự nhiên; $k\geq 2$.

Nếu $p=3k+1$ thì $2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$ và $2p+1=3(2k+1)>3$ nên $2p+1$ không phải số nguyên tố (trái giả thiết).

Do đó $p=3k+2$.

Khi đó:

$p(p+5)+31=(3k+2)(3k+7)+31=9k^2+27k+45=9(k^2+3k+5)\vdots 9$ nên $p(p+5)+31$ là hợp số (đpcm)

8 tháng 1 2019

hop so

21 tháng 1 2019

va snt luon

25 tháng 3 2019

\(p\)là số nguyên tố\(>3\)

Nên\(p=3k+1\)hoặc\(3k+2\)

Xét\(p=3k+1,p+4=3k+1+4=3k+5\)(thỏa mãn)

Xét\(p=3k+2,p+4=3k+2+4=3k+6=3\left(k+2\right)\)là hợp số (loại)

Vậy\(p=3k+1,p+8=3k+1+8=3k+9=3\left(k+3\right)\)là hợp số\(\left(đpcm\right)\)