K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2019

Ta thấy p2 là số chính phương nên chia 3 dư 0 hoặc 1.

+) Nếu p2 chia 3 dư 0: Khi đó p \(⋮\) 3 (vì 3 là số nguyên tố) \(\Rightarrow\) p = 3 (vì p là số nguyên tố) \(\Rightarrow\) p2 + 1 = 10 là hợp số (loại, vì p2 + 1 là số nguyên tố)

+) Nếu p2 chia 3 dư 1: Khi đó p \(⋮̸\) 3 \(\Rightarrow\) p4  \(⋮̸\) 3. Lại có p4 là số chính phương nên chia 3 dư 0 hoặc 1. Mà p4 \(⋮̸\) 3 nên p4 chia 3 dư 1 \(\Rightarrow\) p4 + 2018 chia hết cho 3 (vì 2018 chia 3 dư -1) \(\Rightarrow\) p4 + 2018 là hợp số (vì nó lớn hơn 3)

Vậy ta có đpcm

3 tháng 11 2016

Ví p là SNT > 3

=> p có dạng 3q + 1 hoặc 3p + 2

+ Xét p = 3p + 2

Ta có :

p + 4 = 3p + 2 + 4 = 3 p + 6 = 3 ( p + 2 )

Vì 3 ( p + 2 ) chia hết cho 3 nên p + 4 là hợp số

=> loại p = 3p + 2

Vậy p = 3q + 1

Ta có :

p + 8 = 3q + 1 + 8 = 3q + 9 = 3 ( q + 3 )

Ví 3 ( q + 3 ) chia hết cho 3

Mà p + 8 > 3

=> p + 8 là hợp số

Vậy p + 8 là hợp số

3 tháng 11 2018

Trong olm có ai ở Sài gòn không? ở quận mấy?

có ai ở long xuyên không?

có ai ở Đà lạt không?

Nếu có hãy nhắn tin vs mình nhé! Mình đã đọc nội qui.vui lòng ko đăng cái  thứ nhảm loz ấy lên đây=))

21 tháng 11 2019
(n-4) chia hết cho (n+1)
9 tháng 11 2014

Vi P là số nguyên tố lớn hơn 3 nên P không chia hết cho 3 \(\Rightarrow\)P = 3k + 1 hoặc 3k + 2

+)Nếu P = 3k + 2 thì P + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên P + 4 là hợp số (loại)

+)Nếu P = 3k + 1 thì P + 8 = 3k + 1 + 8 = 3k + 9 chia hết cho 3 và lớn hơn 3 nên P + 8 là hợp số (đpcm)

Bài 4:

Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ

hay P-1 và P+1 là các số chẵn

\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)

Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)

Thay P=3k+1 vào (P-1)(P+1), ta được:

\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)

Thay P=3k+2 vào (P-1)(P+1), ta được:

\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)

Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)

mà \(\left(P-1\right)\left(P+1\right)⋮8\)

và (3;8)=1

nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)

25 tháng 1 2021

thank you bn nha

 

8 tháng 1 2017

Cac Snt >3 deu co dang 6k+1;6k+2;6k+3;6k+4;6k+5

Neu p=6k+2 thi chia het cho 2

Neu p= 6k+3thi chia het cho 3

Neu p =6k+4 thi chia het cho 2

Vay p chi co the =6k+1 hoac 6k+5

5 tháng 3 2020

p  = 2 thì p + 2 = 4, không là snt

31 tháng 10 2015

Vì p là số nguyên tố, p>3 nên p có một trong 2 dạng sau:

p=3k+1( k thuộc N*)

p=3k+2(k thuộc N*)

Nếu p=3k+2 ta có:

3k+2+4=3k+6=3(k+2) chia hết cho 3=> là hợp số(loại) vì p+4 là số nguyên tố

Nếu p=3k+1 ta có:

3k+1+8=3k+9=3(k+3) là hợp số phù hợp với đề bài

Vậy số nguyên tố p có dạng 3k+1 thì p+8 là hợp số.

Tick nha

 

31 tháng 10 2015

Vì p là số nguyên tố, p>3 nên số p có 1 trong 2 dạng:

p=3k+1(k thuộc N*)

p=3k+2(k thuộc N*)

Thử vảo là xong