Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p nguyên tố > 3 nên p lẻ => p+1 chia hết cho 2 (1)
p nguyên tố > 3 nên p ko chia hết cho 3
Nếu p chia 3 dư 1 thì p+2 chia hết cho 3
Mà p+2 > 3 => p+2 là hợp số
=> để p+2 cũng là số nguyên tố thì p chia 3 dư 2
=> p+1 chia hết cho 3 (2)
Từ (1) và (2) => p+1 chia hết cho 2 . 3 = 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
=> ĐPCM
k mk nha
Ta có :
Coi : \(A=\left(a-1\right)\left(a+4\right)=\left(a-1\right).a+\left(a-1\right).4=a^2-a+4a-4\)
Vì a là số nguyên tố lớn hơn 3 nên a=3k+1 hoặc a=3k+2
Với a=3k+1:
\(A=\left(3k+1\right)^2-\left(3k+1\right)+4.\left(3k+1\right)-4\)
\(=9k^2+1+2.3k-3k-1+12k+4-4\)
\(=9k^2+6k-3k+12k+1-1+4-4\)
\(=9k^2+15k\)
Với k là số chẵn: A là tổng của 2 số chẵn nên chia hết cho 2
Với k là số lẻ: A là tổng của 2 số lẻ-> là một số chẵn chia hết cho 2
=> Trong mọi trường hợp A luôn chia hết cho 2
Lại có:
9k2
chia hết cho 3
15k chia hết cho 3
=> A=9k2+15k chia hết cho 3
Vì ƯCLN(2,3)=1 và A chia hết cho 2 , 3
=> A chia hết cho 2.3=6
=> A chia hết cho 6
Làm tương tự với k=3k+2
:D
Bài 4:
Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ
hay P-1 và P+1 là các số chẵn
\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)
Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)
Thay P=3k+1 vào (P-1)(P+1), ta được:
\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)
Thay P=3k+2 vào (P-1)(P+1), ta được:
\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)
Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)
mà \(\left(P-1\right)\left(P+1\right)⋮8\)
và (3;8)=1
nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)
1)
+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)
+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)
+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2
Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3
=>p+8 là hợp số (trái với giả thiết )
Vậy p phải có dạng là 3k+2
Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3
=>p+4 là hợp số (đpcm)