K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2022

a: Xét ΔOAP vuông tại A có sin OPA=OA/OP=1/2

nên góc OPA=30 độ

Xét (O) có

PA,PB là các tiếp tuyến

nên PA=PB và PO là phân giác của góc APB

=>góc APB=60 độ

=>ΔPAB đều

b: góc AOB=360-90-90-60=120 độ

Độ dài cung AB là:

\(\dfrac{pi\cdot5\cdot120}{180}=\dfrac{10}{3}pi\)

 

a) xét tứ giác ABOC có

\(\widehat{ABO}=\widehat{ACO}=90^0\)(tiếp tuyến AB,AC)

=> tứ giác ABOC nội tiếp

b) Xét tam giác  ABH zà tam giác AOB có

\(\hept{\begin{cases}\widehat{ABO}chung\\\widehat{BHA}=\widehat{OBA}=90^0\left(BC\perp CA\left(tựCM\right)\right)\end{cases}}\)

=> \(\Delta ABH~\Delta AOB\left(g.g\right)\)

\(=>\frac{AB}{AO}=\frac{AH}{AB}=>AH.AB=AB.AB\left(1\right)\)

xét tam giác ABD zà tam giác AEB có

\(\widehat{BAE}chung\)

\(\widehat{ABD}=\widehat{BEA}\)(cùng chắn \(\widebat{BD}\))

=> \(\Delta ABD~\Delta AEB\left(g.g\right)\)

\(=>\frac{AB}{AE}=\frac{AD}{AB}=>AE.AD=AB.AB\left(2\right)\)

từ 1 zà 2 suy ra

AH.AO=AE.AD(dpcm)

=>\(\Delta ADH~\Delta AOE\)

\(=>\widehat{DEO}=\widehat{DHA}\)(2 góc tương ứng

lại có 

\(\widehat{DHA}+\widehat{DHO}=180^0=>\widehat{DEO}+\widehat{DHO}=180^0\)

=> tứ giác DEOH nội tiếp

c)  Có tam giá AOM zuông tại O , OB là đường cao

\(=>\frac{1}{OA^2}+\frac{1}{OM^2}=\frac{1}{OB^2}=\frac{1}{R^2}\)

\(\frac{1}{OA.OM}=\frac{1}{OA}.\frac{1}{OM}\le\frac{1}{\frac{OA^2+OM^2}{2}}=\frac{1}{\frac{R^2}{2}}=\frac{1}{2R^2}\left(a,b\le\frac{a^2+b^2}{2}\right)\)

=>\(OA.OM\ge2R^2=>MinS_{AMN}=2R^2\)

dấu = xảy ra khi OA=OM

=> tam giác OAM zuông cận tại O

=> góc A = độ

bài 2 

ra kết quả là \(6\pi m^2\)

nếu cần giải bảo mình 

a: \(AB=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)

b: Xét ΔOBA vuông tại B có sin OAB=OB/OA=1/2

=>góc OAB=30 độ

=>góc BAC=60 độ

=>ΔBAC đều

10 tháng 11 2021

Bài 1:

10 tháng 11 2021

Bài 2:

(Bạn vẽ hình thì vẽ nửa trên đường thôi nha, tại đề cho là nửa đường tròn tâm O)

a, Vì AC//BD (⊥AB) nên ABDC là hthang

Mà \(\widehat{CAB}=90^0\) nên ABDC là hthang vuông

b, Gọi I là trung điểm CD

Mà O là trung điểm AB nên OI là đtb hthang ABDC

Do đó OI//AC\(\Rightarrow\)OI⊥AB

Mà tam giác OCD vuông tại O nên OI là bán kính đg tròn ngoại tiếp tam giác OCD

Do đó AB là tiếp tuyến tại O của (I)

Vậy đường tròn ngoại tiếp tam giác COD tiếp xúc với đường thẳng AB tại O.

c, Kẻ OH⊥CD

Vì \(\widehat{AOC}=\widehat{IOD}\) (cùng phụ \(\widehat{COI}\)), \(\widehat{IOD}=\widehat{IDO}\left(IO=ID=\dfrac{1}{2}CD\right)\) nên \(\widehat{AOC}=\widehat{IDO}\Rightarrow90^0-\widehat{AOC}=90^0-\widehat{IDO}\Rightarrow\widehat{ACO}=\widehat{HCO}\)

Vì \(\left\{{}\begin{matrix}\widehat{ACO}=\widehat{HCO}\\CO.chung\\\widehat{CAO}=\widehat{CHO}=90^0\end{matrix}\right.\) nên \(\Delta AOC=\Delta HOC\Rightarrow OA=OH\Rightarrow H\in\left(O\right)\)

Mà CD⊥OH nên CD là tt tại H của (O)

Do đó \(CA\cdot DB=CH\cdot HD=OH^2=R^2\) (kết hợp HTL)

 

 

 

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC
hay ΔABC cân tại A

mà \(\widehat{BAC}=60^0\)

nên ΔABC đều