K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

góc DAC=1/2*sd cung CD

góc DAB=1/2*sđ cung DB

mà sđ cung DC=sđ cung DB

nên góc DAC=góc DAB

=>AD là phân giác của góc CAB

11 tháng 1 2023

anh ơi vẽ hình cho e với ạ 

23 tháng 6 2021

a) Vì AB là đường kính \(\Rightarrow\angle ACB=90\Rightarrow AC\bot BC\)

mà \(ON\bot BC\) (N là điểm chính giữa cung BC)

\(\Rightarrow CK\parallel EN\) mà \(NK\bot KC\Rightarrow NK\bot EN\)

\(\Rightarrow\angle KCE=\angle KNE=\angle CEN=90\Rightarrow ECKN\) là hình chữ nhật

\(\angle KNO=90\Rightarrow KN\) là tiếp tuyến

b) ECKN là hình chữ nhật \(\Rightarrow ECKN\) cũng nội tiếp

\(\Rightarrow\angle KEN=\angle KCN=\angle CNE\) \((KC\parallel NE)\)

Vì \(AC\parallel ND\) mà ACND nội tiếp \(\Rightarrow ACND\) là hình thang cân

\(\Rightarrow\angle CNE=\angle ADN\Rightarrow\angle KEN=\angle ADN\) \(\Rightarrow KE \parallel AD\)

mà \(KA\parallel ED\) \(\Rightarrow KEDA\) là hình bình hành

c) Vì \(\left\{{}\begin{matrix}MO\bot AC\\NK\bot AC\end{matrix}\right.\) \(\Rightarrow MO\parallel NK\) \(\Rightarrow\dfrac{NI}{IM}=\dfrac{NK}{MO}\Rightarrow\dfrac{NI}{NK}=\dfrac{MI}{MO}=\dfrac{MI}{R}\)

Vì M,N lần lượt là điểm chính giữa cung AC,BC \(\Rightarrow\angle MON=90\)

\(\Rightarrow MN=\sqrt{OM^2+ON^2}=\sqrt{R^2+R^2}=\sqrt{2}R\)

Ta có: \(\dfrac{NI}{NK}+\dfrac{NI}{NO}=\dfrac{MI}{R}+\dfrac{NI}{R}=\dfrac{MI+NI}{R}=\dfrac{MN}{R}=\dfrac{\sqrt{2}R}{R}=\sqrt{2}\)

\(\Rightarrow NI\left(\dfrac{1}{NK}+\dfrac{1}{NO}\right)=\sqrt{2}\Rightarrow\dfrac{\sqrt{2}}{NI}=\dfrac{1}{NK}+\dfrac{1}{NO}\)

 

23 tháng 6 2021

thank :3333

OB=OC

MB=MC

=>OM là trung trực của BC

=>OM vuông góc BC tại I

góc CHO+góc CIO=180 độ

=>CHOI nội tiếp

5 tháng 6 2021

a) Vì M là điểm chính giữa cung AB \(\Rightarrow OM\bot AB\Rightarrow\angle AOM=90=\angle AHM\)

\(\Rightarrow AOHM\) nội tiếp

b) MKBA nội tiếp \(\Rightarrow\angle MKA=\angle MBA=45\) (M là điểm chính giữa)

\(\Rightarrow\Delta MHK\) vuông cân tại H

c) Chu vi của tam giác OPK là: \(OP+OK+PK\)

Ta có: \(\left(OP+OK+PK\right)^2\le3\left(OP^2+OK^2+PK^2\right)\) (BĐT Bunhia)

\(\Rightarrow OP+OK+PK\le\sqrt{3\left(OK^2+OP^2+PK^2\right)}=\sqrt{3.2OK^2}=\sqrt{6}OK\)

Để chu vi tam giác OPK lớn nhất \(\Rightarrow\) OK lớn nhất \(\Rightarrow\) K là điểm chính giữa cung BMundefined