Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi O là trung điểm của BC.
Ta có \(\stackrel\frown{BD}=\stackrel\frown{DE}=\stackrel\frown{EC}\Rightarrow\widehat{BOD}=\widehat{DOE}=\widehat{EOC}=60^o\).
Từ đó CE // AB, BD // AC.
Suy ra \(\Delta ABN\sim\Delta ECN\).
b) Theo tính đối xứng ta có BM = CN.
Ta có \(\dfrac{BN}{NC}=\dfrac{AB}{CE}=\dfrac{AB}{CO}=2\Rightarrow BN=2NC\Rightarrow MN=NC\).
Dễ dàng suy ra đpcm.
tam giac abd bằng tam giac ace (c.g.c)
nên góc bad=góc cae
tam giac abi=tam giac acj(g,c,g)
nên bi=cj(1)
gọi o là trung điểm bc
vì góc oda=góc bad(=60-góc adb)
nên od//ab nên \(\frac{oi}{ib}=\frac{od}{ab}=\frac{od}{2ob}=\frac{1}{2}\)
nên oi=\(\frac{1}{2}\)ib hay 2oi=ib
nên ij=ib(2)
từ (1) và (2) suy ra bi=ij=jc
a: sđ cung AC=2/3*180=120 độ
=>sđ cung AM=sđ cung MC=120/2=60 độ
sđ cung NB=sđ cung NC=60/2=30 độ
góc MIC=1/2(sđ cung AB+sđ cung MC)
=1/2(180+60)=120 độ
b: N là điểm chính giữa của cung BC
=>ON vuông góc bC
=>ON//AC
=>DN vuông góc NO
=>DN là tiếp tuyến của (O)